精英家教网 > 高中数学 > 题目详情
17.直线x-5y+3=0经过x2+y2-mx+2y+$\frac{{m}^{2}}{4}$-1=0的圆心,则m等于(  )
A.-16B.16C.0或16D.0或-16

分析 求出圆的圆心坐标,代入x-5y+3=0,可得m的值.

解答 解:x2+y2-mx+2y+$\frac{{m}^{2}}{4}$-1=0的圆心坐标为($\frac{m}{2}$,-1),
代入x-5y+3=0,可得$\frac{m}{2}$+5+3=0,
∴m=-16.
故选:A.

点评 本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=-2x上,求3sinθ+cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.由实数x,-x|x|,$\sqrt{{x}^{2}}$,($\sqrt{{x}^{2}}$)2,-$\root{3}{{x}^{3}}$组成的集合中最多含有4个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.以下四个命题中正确的个数为1个.
①tan[arcsin(cos$\frac{40π}{3}$)]=-$\sqrt{3}$;
②△ABC不是钝角三角形,且有sin(A+B-C)=sin(A-B+C),则此三角形是直角三角形;
③若sinα+sin2α=1,则cos2α+cos4α+cos6α=$\frac{1}{2}$;
④若$\frac{sinα}{{m}^{2}-1}$=$\frac{cosα}{2msinβ}$=$\frac{1}{1+2mcosβ+{m}^{2}}$,则sinα=$\frac{{m}^{2}-1}{{m}^{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.用适当的方法表示下列集合:
(1)小于20的素数组成的集合;
(2)方程x2-4=0的解的集合;
(3)由大于3小于9的实数组成的集合;
(4)所有奇数组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{cos(\frac{π}{2}x+\frac{π}{6})\\;x≥0}\\{f(-x)\\;x<0}\end{array}\right.$,则f(-2013)等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知cos($\frac{π}{4}$+x)=$\frac{3}{5}$,$\frac{7π}{12}$<x<$\frac{7π}{4}$,求$\frac{sin2x+sin2xtanx}{1-tanx}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知sinα+cosα=-$\frac{1}{5}$,α∈(0,π),求:
(1)sinαcosα;
(2)sinα-cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|-3≤x≤2},B={x|m+1<x<2m-2},B?A,求m的取值范围.

查看答案和解析>>

同步练习册答案