精英家教网 > 高中数学 > 题目详情
定义在R上的奇函数满足f(x+1)=-f(1-x),当x∈(0,1)时,f(x)=log 
1
2
(1-x),则f(x)在(1,2)上(  )
A、是减函数,且f(x)>0
B、是增函数,且f(x)<0
C、是减函数,且f(x)<0
D、是增函数,且f(x)>0
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:根据条件推出函数的周期性,利用函数的周期性,奇偶性和单调性之间的关系即可得到结论.
解答: 解;∵定义在R上的奇函数满足f(x+1)=-f(1-x),
∴f(x+1)=-f(1-x)=f(x-1),
即f(x+2)=f(x),
即函数的周期是2.
则f(x)在(1,2)上图象和在(-1,0)上的图象相同,
∵当x∈(0,1)时,f(x)=log 
1
2
(1-x),
∴此时f(x)单调递增,且f(x)>0,
∵f(x)是奇函数,
∴当x∈(-1,0)时,f(x)单调递增,且f(x)<0,
即当x∈(1,2)时,f(x)单调递增,且f(x)<0,
故选:B.
点评:本题主要考查函数奇偶性和单调性的应用,利用条件推出函数的周期性是解决本题的关键,综合考查函数性质的综合应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线y=x是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一条渐近线,则双曲线的离心率
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
ex
(x≥2)
f(x+1)(x<2)
,则f(ln3)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

线性回归方程y=bx+a中,b的意义是(  )
A、x每增加一个单位,y就平均增加或减少|b|个单位
B、x每增加一个单位,y就增加a+b个单位
C、x每增加一个单位,y就增加a个单位
D、x每增加一个单位,y就减少a+b个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中是真命题的个数是(  )
①?α,β∈R,sin(α+β)≠sinα+sinβ
②命题p:?x∈R,x2+x+1=0,则命题?p:?x∈R,x2+x+1≠0;
③?ϕ∈R,函数f(x)=sin(2x+φ)都不是偶函数
④?a>0,a≠1,函数f(x)=logax与y=ax的图象有三个交点.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示程序框图,最后输出的S值是(  )
A、15B、18C、20D、27

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义一种新运算a?b=
b,a≥b
a,a<b
,求函数f(x)=x?(3-x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(cosx)=cos2007x.求:
(1)f(
1
2
)的值;
(2)f(sinx)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某高校进行自主招生面试时的程序如下:共设3道题,每道题答对给10分,答错倒扣5分(每道题都必须回答,但相互不影响).设某学生对每道题答对的概率都为
3
4
,则该学生在面试时得分的期望为
 

查看答案和解析>>

同步练习册答案