精英家教网 > 高中数学 > 题目详情
13.已知 x,y∈(-1,1),则$\sqrt{{{({x+1})}^2}+{{({y-1})}^2}}+\sqrt{{{({x+1})}^2}+{{({y+1})}^2}}+\sqrt{{{({x-1})}^2}+{{({y+1})}^2}}+\sqrt{{{({x-1})}^2}+{{({y-1})}^2}}$的最小值为$4\sqrt{2}$.

分析 由题意,$\sqrt{{{({x+1})}^2}+{{({y-1})}^2}}+\sqrt{{{({x+1})}^2}+{{({y+1})}^2}}+\sqrt{{{({x-1})}^2}+{{({y+1})}^2}}+\sqrt{{{({x-1})}^2}+{{({y-1})}^2}}$表示(x,y)与(-1,1),(-1,-1),(1,-1),(1,1)的距离的和,根据图形的对称性,即可得出结论.

解答 解:由题意,$\sqrt{{{({x+1})}^2}+{{({y-1})}^2}}+\sqrt{{{({x+1})}^2}+{{({y+1})}^2}}+\sqrt{{{({x-1})}^2}+{{({y+1})}^2}}+\sqrt{{{({x-1})}^2}+{{({y-1})}^2}}$表示(x,y)与(-1,1),(-1,-1),(1,-1),(1,1)的距离的和,显然点在原点时,距离和最小,最小为$4\sqrt{2}$.
故答案为$4\sqrt{2}$.

点评 本题考查距离公式的运用,考查学生分析解决问题的能力,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某中学有一调查小组为了解本校学生假期中白天在家时间的情况,从全校学生中抽取120人,统计他们平均每天在家的时间(在家时间在4小时以上的就认为具有“宅”属性,否则就认为不具有“宅”属性)
具有“宅”属性不具有“宅”属性总计
男生205070
女生104050
总计3090120
(1)请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断能否在犯错误的概率不超过0.05的前提下认为“是否具有‘宅’属性与性别有关?”
(2)采用分层抽样的方法从具有“宅”属性的学生里抽取一个6人的样本,其中男生和女生各多少人?从6人中随机选取3人做进一步的调查,求选取的3人至少有1名女生的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0245.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.曲线y=x3-2x+m在x=1处的切线的倾斜角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x-1-lnx.
(1)求函数f(x)的极值;
(2)对?x>0,f(x)≥bx-2恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知$cos(\frac{5π}{2}+α)=\frac{3}{5}$,$-\frac{π}{2}<α<0$,则sin2α的值是-$\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知全集U={1,2,3,4,5,6,7},A={1,2,3,4},B={3,4,5,6,7},则A∩(∁UB)=(  )
A.{1,2}B.{3,4}C.{5,6,7}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.大衍数列,来源于中国古代著作《乾坤谱》中对易传“大衍之数五十”的推论.其前10项为:0、2、4、8、12、18、24、32、40、50.通项公式:an=$\left\{\begin{array}{l}{\frac{{n}^{2}-1}{2},n为奇数}\\{\frac{{n}^{2}}{2},n为偶数}\end{array}\right.$,如果把这个数列{an}排成如图形状,并记A(m,n)表示第m行中从左向右第n个数,则A(10,4)的值为(  )
A.1200B.3612C.3528D.1280

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,在矩形ABCD中,M是BC的中点,N是CD的中点,若$\overrightarrow{AC}$=λ$\overrightarrow{AM}$+μ$\overrightarrow{BN}$,则λ+μ=(  )
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{6}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex+ax,g(x)=x•ex+a
(1)若对于任意的实数x,都有f(x)≥1,求实数a的取值范围;
(2)令F(x)=[g(x)-f(x)],且实数a≠0,若函数F(x)存在两个极值点x1,x2,证明:0<e2F(x1)<4且0<e2F(x2)<4.

查看答案和解析>>

同步练习册答案