A
分析:由函数y=x3-ax在(1,2)上连续,且y(1)=1-a,y(2)=8-2a,若函数y=x3-ax(x∈R)在(1,2)有一个零点,则可得(1-a)(8-2a)<0,从而可求
解答:∵函数y=x3-ax在(1,2)上连续,且y(1)=1-a,y(2)=8-2a
又∵函数y=x3-ax(x∈R)在(1,2)有一个零点
∴(1-a)(8-2a)<0
∴1<a<4
故选:A
点评:本题主要考查函数的零点及函数的零点存在性定理,函数的零点的研究主要结合函数的性质,函数的思想得到了很好的体现.