精英家教网 > 高中数学 > 题目详情

【题目】如图,已知中,角的对边分别为

)若,求面积的最大值;

)若,求.

【答案】(Ⅰ); (Ⅱ).

【解析】【试题分析】(Ⅰ)先运用余弦定理建立方程,再运用基本不等式与三角形的面积公式求解; (Ⅱ)先运用正弦定理将边化为角的关系,再借助三角变换公式进行求解:

(Ⅰ)由余弦定理得, ………………………………………2分

,当且仅当时取等号;

解得 ………………………………………………………………………………………4分

,即面积的最大值为.………………6分

(Ⅱ)因为,由正弦定理得…………………………………………8分

,故

…………………………………………10分

. ………………………………………………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】四棱锥PABCD中,底面ABCD是边长为8的菱形,BAD=,若PA=PD=5,平面PAD平面ABCD

(1)求四棱锥PABCD的体积;

(2)求证:ADPB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设0<x<1,a>0且a≠1,试比较|loga(1-x)|与|loga(1+x)|的大小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上为增函数.

(1)求实数的取值范围;

(2)若函数的图象有三个不同的交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数的图象经过P34)点,求a的值;

2)比较大小,并写出比较过程;

3)若,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修4—5:不等式选讲

已知

1)关于的不等式恒成立,求实数的取值范围;

2)设,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四边形ABCD为菱形GACBD的交点BE⊥平面ABCD

(1)证明平面AEC⊥平面BED.

(2)若∠ABC=120°AEEC三棱锥E-ACD的体积为求该三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中, 是抛物线的焦点, 是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为

(1)求抛物线的方程;

(2)若点的横坐标为,直线与抛物线有两个不同的交点 与圆有两个不同的交点,求当时, 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,我国电子商务蓬勃发. 2016年“618”期间,某购平台的销售业绩高达516亿元人民币,与此同时,相关管理部门推出了针对该网购平台的商品和服务的评价系统. 评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为0.6,对服务的满意率为0.75,其中对商品和服务满意的交易为80次.

(Ⅰ) 根据已知条件完成下面列联表,并回答能有99%的把握认为“网购者对商品满意与服务满意之间有关系”

对服务满意

对服务不满意

合计

对商品满意

80

对商品不满意

合计

200

(Ⅱ) 若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和服务满意的次数为随机变量,求的分布列和数学期望.

附:(其中为样本容量

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

同步练习册答案