精英家教网 > 高中数学 > 题目详情
如图,在△ABC中,AD⊥BC,
AD
=
1
5
AB
+
4
5
AC

(1)求
|
CD
|
|
DB
|
的值;
(2)设cosC=
5
5
,且实数t满足|
CB
-t
CA
|≥|
AB
+
AC
|
,求t的取值范围.
分析:(1)根据
AD
=
1
5
AB
+
4
5
AC
,利用向量的线性运算,即可求
|
CD
|
|
DB
|
的值;
(2)先求得∠BAC=
π
2
,根据|
CB
-t
CA
|≥|
AB
+
AC
|
,两边平方,化简即可求t的取值范围.
解答:解:(1)
CD
=
AD
-
AC
=
1
5
AB
+
4
5
AC
-
AC
=
1
5
AB
-
1
5
AC
=
1
5
CB
,∴
|
CD
|
|
DB
|
=
1
4

(2)根据题意:由cosC=
5
5
,令AC=5a,BC=5
5
a,AB=10a,AD=2
5
a
,可得∠BAC=
π
2

|
CB
-t
CA
|≥|
AB
+
AC
|
,两边平方得,
CB
2
+t2
CA
2
-2
CB
CA
•t≥
AB
2
+
AC
2
+2
AB
AC

∴125a2+25a2t2-2t•25a2≥100a2+25a2,∴t2-2t≥0,
∴t≥2或t≤0.
点评:本题考查向量的线性运算,考查向量模的求解,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,已知∠ABC=90°,AB上一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直径BE的长;
(2)计算:△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=
3
BD,BC=2BD,则sinC的值为(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,设
AB
=a
AC
=b
,AP的中点为Q,BQ的中点为R,CR的中点恰为P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比
S平行四边形ANPM
S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,已知
BD
=2
DC
,则
AD
=(  )

查看答案和解析>>

同步练习册答案