分析 令a=$\frac{α+β}{2}$,b=$\frac{α-β}{2}$,则α=a+b,β=a-b,再利用正弦函数加法定理能证明sinα+sinβ=2sin$\frac{α+β}{2}$cos$\frac{α-β}{2}$.
解答 证明:令a=$\frac{α+β}{2}$,b=$\frac{α-β}{2}$,则α=a+b,β=a-b
sin(a+b)=sinacosb+cosasinb
sin(a-b)=sinacosb-cosasinb
两式相加得:
sin(a+b)+sin(a-b)=2sinacosb
∴sinα+sinβ=2sin$\frac{α+β}{2}$cos$\frac{α-β}{2}$.
点评 本题考查和差化积公式的证明,考查换元法、正弦函数加法定理等基础知识,考查推理论证能力、运算求解能力,考查函数与方思想,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{{2}^{10}}$ | B. | $\frac{1}{{2}^{15}}$ | C. | 2${\;}^{\frac{31}{16}}$ | D. | 2${\;}^{\frac{47}{16}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数 f(x) 有极大值f(2)和极小值f(1) | B. | 函数f(x) 有极大值 f(2)和极小值 f(-2) | ||
| C. | 函数 f(x)有极大值f(-2)和极小值 f(1) | D. | 函数f(x) 有极大值f(-2)和极小值 f(2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com