精英家教网 > 高中数学 > 题目详情
(14分)
如图,点P是边长为1的菱形ABCD外一点,,E是CD的中点,

(1)证明:平面平面PAB;  
(2)求二面角A—BE—P的大小。
(1)如图,连结BD,由四边形ABCD是菱形且知,
BCD是等边三角形,
E是CD的中点,
而AB//CD, 
平面ABCD,

∴ BE⊥平面PAB。   
平面PAB。
(2)由(1)知,平面PAB,所以
是二面角A—BE—P的平面角 
平面ABCD,



故二面角A—BE—P的大小是
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,正方体中,点上运动,给出下列四个命题:
 
①三棱锥的体积不变; ②
∥平面;           ④平面
其中正确的命题个数有(    )                                                                            
A. B. C. D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在正四棱柱ABCD—A1B1C1D1中,AB=1,AA1=2,E为棱AA1上一点,且平面BDE。

  (I)求直线BD1与平面BDE所成角的正弦值;
(II)求二面角C—BE—D的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本题满分12分) 
如图,四棱锥的底面是正方形,侧面
是等腰三角形且垂直于底面,
分别是的中点。
(1)求证:
(2)求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图PA⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB,PD的中点.
(1)求证:AF//平面PCE;
(2)若PA=AD且AD=2,CD=3,求P—CE—A的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
长方体ABCD—A1B1C1D1中,AD=AA1=1,AB=2,点E是AB上的点,若直线D1E与EC垂直

(I)求线段AE的长;
(II)求二面角D1—EC—D的大小;
(III)求A点到平面CD1E的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,正方形ABCD所在平面与等腰三角形EAD所在平面相交于AD,平面CDE

(I)求证:平面ADE;
(II)在线段BE上存在点M,使得直线M与平面EAD所成角的正弦值为,试确定点M的位置。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.如图,在四棱锥中,底面是矩形,平面分别是的中点.
(1)证明:平面
(2)求平面与平面夹角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P—ABCD的底面为矩形,PA=AD=1,PA⊥面ABCD,E是AB的中点,F为PC上一点,且EF//面PAD。

(I)证明:F为PC的中点;
(II)若二面角C—PD—E的平面角的余弦值为求直线ED与平面PCD所成的角

查看答案和解析>>

同步练习册答案