精英家教网 > 高中数学 > 题目详情

【题目】

已知函数是定义在上的奇函数,且

(1)求实数的值;

(2)判断函数的单调性,并用定义证明;

(3)解不等式:

【答案】(Ⅰ);(Ⅱ)见解析;(Ⅲ) .

【解析】试题分析:(1)根据定义域在上的奇函数可得即可求解实数的值;(2)直接利用定义法证明单调性;(3)利用函数的单调性和奇偶性即求解不等式.

试题解析:(1)由题意可知,解得

(2)由(1)

函数上为增函数,

证明:在上任取,且

,∴,∴

,即

函数 上为增函数.

(3)原不等式

是定义在上的奇函数,∴

由对数的性质

又∵上的增函数,

解得,∴.

【方法点晴】本题主要考查函数的奇偶性、函数的单调性及抽象函数解不等式,属于难题.根据抽象函数的单调性解不等式应注意以下三点:(1)一定注意抽象函数的定义域(这一点是同学们容易疏忽的地方,不等掉以轻心);(2)注意应用函数的奇偶性(往往需要先证明是奇函数还是偶函数);(3)化成 后再利用单调性和定义域列不等式组.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,有一个正三棱锥的零件,P是侧面ACD上的一点.

过点P作一个与棱AB垂直的截面,怎样画法?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若某产品的直径长与标准值的差的绝对值不超过1mm时,则视为合格品,否则视为不合格品.在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差单位:mm,将所得数据分组,得到如下频率分布表:

1将上面表格中缺少的数据填在相应位置上;

2估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间1,3]内的概率;

3现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品.据此估算这批产品中的合格品的件数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.圆锥的底面是圆面,侧面是曲面

B.用一张扇形的纸片可以卷成一个圆锥

C.一个物体上、下两个面是相等的圆面,那么它一定是一个圆柱

D.圆台的任意两条母线的延长线可能相交也可能不相交

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了了解全校学生的上网情况,在全校采用随机抽样的方法抽取了40名学生其中男女生人数恰好各占一半进行问卷调查,并进行了统计,按男女分为两组,再将每组学生的月上网次数分为5组:,得到如图所示的频率分布直方图:

(1)写出的值;

(2)求抽取的40名学生中月上网次数不少于15次的学生人数;

在抽取的40名学生中,从月上网次数不少于20次的学生中随机抽取2人 ,求至少抽到1名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-1:几何证明选讲

如图所示,已知圆外有一点,作圆的切线为切点,过的中点,作割线,交圆于两点,连接并延长,交圆于点,连接交圆于点,若

)求证:

)求证:四边形是平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在三角形中,为其中位线,且,若沿将三角形折起,使,构成四棱锥,且

1求证:平面 平面

2 异面直线所成的角为时,求折起的角度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,椭圆过点,直线轴于,且为坐标原点.

1)求椭圆的方程;

2)设是椭圆的上顶点,过点分别作直线交椭圆两点,设这两条直线的斜率分别为,且,证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海州市英才中学某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分別到气象局与某医院抄录了月份每月号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日期

昼夜温差

就诊人数

该兴趣小组确定的研究方案是:先从这六组数据中选取组,用剩下的组数据求线性回归方程,再用被选取的组数据进行检验.

1求选取的组数据恰好是相邻两个月的概率;

2若选取的是月与6月的两组数据,请根据月份的数据,求出关于的线性回归方程

3若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想.

其中回归系数公式,,

查看答案和解析>>

同步练习册答案