精英家教网 > 高中数学 > 题目详情
5.已知直线x-2y+2=0经过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点A和上顶点D,椭圆的右顶点为B,点S是椭圆上位于x轴上方的动点,直线AS,BS与直线l:x=$\frac{10}{3}$分别交于M,N两点.
(1)求椭圆C的方程;
(2)确定线段MN的长度有无最小值,若有,请求出最小值,若无,请说明理由.

分析 (1)由已知得,椭圆C的左顶点为A(-2,0),上顶点为D(0,1,由此能求出椭圆C的方程.
(2)设直线AS的方程为y=k(x+2),从而M($\frac{10}{3}$,$\frac{16}{3}k$).题设条件可以求出N($\frac{10}{3}$,-$\frac{1}{3k}$),所以|MN|=|$\frac{16k}{3}$+$\frac{1}{3k}$|,再由均值不等式进行求解.

解答 解:(1)由已知得,椭圆C的左顶点为A(-2,0),上顶点为D(0,1),
∴a=2,b=1,
故椭圆C的方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$.
(2)直线AS的斜率k显然存在,且k>0,故可设直线AS的方程为y=k(x+2),从而M($\frac{10}{3}$,$\frac{16}{3}k$).
由y=k(x+2),代入椭圆方程得(1+4k2)x2+16k2x+16k2-4=0.
设S(x1,y1),则(-2)x1=$\frac{16{k}^{2}-4}{1+4{k}^{2}}$得x1=$\frac{2-8{k}^{2}}{1+4{k}^{2}}$,从而y1=$\frac{4k}{1+4{k}^{2}}$.
又B(2,0)
由$\left\{\begin{array}{l}{y=-\frac{1}{4k}(x-2)}\\{x=\frac{10}{3}}\end{array}\right.$得N($\frac{10}{3}$,-$\frac{1}{3k}$),
故|MN|=|$\frac{16k}{3}$+$\frac{1}{3k}$|,
又k>0,∴|MN|=$\frac{16k}{3}$+$\frac{1}{3k}$≥2$\sqrt{\frac{16k}{3}•\frac{1}{3k}}$=$\frac{8}{3}$,
当且仅当$\frac{16k}{3}$=$\frac{1}{3k}$,即k=$\frac{1}{4}$时等号成立
∴k=$\frac{1}{4}$时,线段MN的长度取最小值$\frac{8}{3}$.

点评 本题是解析几何中直线与圆锥曲线位置关系中复杂的题目,要求答题者拥有较高的探究转化能力以及对直线与圆锥曲线位置关系中特征有较好的理解,且符号运算能力较强才能胜任此类题的解题工作,这是一个能力型的题,好题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知变量x、y满足约束条件:$\left\{\begin{array}{l}{y≥x}\\{x+2y≤2}\\{x≥-2}\end{array}\right.$,则z=x-3y的最小值是(  )
A.-$\frac{4}{3}$B.4C.-4D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.等差数列{an}中,若a15=10,a47=90,则a2+a4+…+a60=1500.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足a1=$\frac{1}{2}$,an+1an-2an+1+1=0,n∈N*
(1)求证:数列{$\frac{1}{{{a_n}-1}}$}是等差数列;
(2)求证:$\frac{n^2}{n+1}$<$\frac{a_1}{a_2}$+$\frac{a_2}{a_3}$+$\frac{a_3}{a_4}$+…+$\frac{a_n}{{{a_{n+1}}}}$<n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,右顶点为A,点M(a,b)满足MF2平分∠F1MA那么椭圆的离心率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过椭圆9x2+y2=1的一个焦点F1的直线与椭圆交于A,B两点,则A与B和椭圆的另一个焦点F2构成的三角形ABF2的周长是(  )
A.$\frac{4}{3}$B.4C.8D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知线段AB的端点B的坐标为(4,-3),端点A在圆(x+4)2+(y-3)2=4上运动.
(1)求线段AB的中点M的轨迹E的方程;
(2)设(1)中所求的轨迹E分别交x轴正、负半轴于G、H点,交y轴正半轴于F点,过点F的直线l交曲线E于D点,且与x轴交于P点,直线FH与GD交于点Q,O为坐标原点,求证:当P点异于点G时,$\overrightarrow{{O}{P}}•\overrightarrow{{O}Q}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),点A为右顶点,点B为上顶点,坐标原点O到直线AB的距离为$\frac{\sqrt{30}}{5}$c(其中c为半焦距),则椭圆的离心率e为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知椭圆中心在原点,焦点在x轴上,F1,F2分别是它的左、右焦点,A是椭圆上一点,且$\overrightarrow{{F}_{1}{F}_{2}}$$•\overrightarrow{A{F}_{1}}$=0,|$\overrightarrow{{F}_{1}{F}_{2}}$|=$\frac{4}{3}$|$\overrightarrow{A{F}_{1}}$|,则椭圆的离心率为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案