精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分12分)

已知,函数

(I)当为何值时, 取得最大值?证明你的结论;

(II) 上是单调函数,求的取值范围;

(III)设,当时, 恒成立,求的取值范围.

【答案】(Ⅰ)答案见解析;(Ⅱ) (Ⅲ).

【解析】试题分析:(I)求得f’(x)=[-x2+2(a-1)x+2a]ex,取得-x2+2(a-1)x+2a=0的根,即可得到数列的单调性,进而求解函数的最大值.

II)由(I)知,要使得在[-1,1]上单调函数,则:,即可求解a的取值范围;

III),分类参数得,构造新函数x≥1),利用导数求得函数h(x)的单调性和最值,即得到a的取值范围.

试题解析:

I

上单调递减,在上单调递增

,且上单调递增

有最大值,当时取最大值.

II)由(I)知

III)当x≥1f(x)≤g(x),即(-x2+2ax)ex

,则

h(x)上单调递增,

x≥1h(x)≥h(1)=1,

a≥0所以a的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔仔细算相还”,其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,则该人第五天走的路程为(

A. 6B. 12C. 24D. 48

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学餐饮中心为了了解新生的饮食习惯,在某学院大一年级名学生中进行了抽样调查发现喜欢甜品的占.这名学生中南方学生共南方学生中有人不喜欢甜品.

(1)完成下列列联表

喜欢甜品

不喜欢甜品

合计

南方学生

北方学生

合计

(2)根据表中数据,问是否有的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;

(3)已知在被调查的南方学生中有名数学系的学生其中名不喜欢甜品名物理系的学生其中名不喜欢甜品.现从这两个系的学生中,各随机抽取记抽出的人中不喜欢甜品的人数为的分布列和数学期望.

附:.

0.15

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象如图所示,则下列说法正确的是( )

A. 函数的周期为

B. 函数上单调递增

C. 函数的图象关于点对称

D. 把函数的图象向右平移个单位,所得图象对应的函数为奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(wx+φ)(w>0,0<φ<π)的周期为π,图象的一个对称中心为( ,0),将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个 单位长度后得到函数g(x)的图象.
(1)求函数f(x)与g(x)的解析式
(2)是否存在x0∈( ),使得f(x0),g(x0),f(x0)g(x0)按照某种顺序成等差数列?若存在,请确定x0的个数,若不存在,说明理由;
(3)求实数a与正整数n,使得F(x)=f(x)+ag(x)在(0,nπ)内恰有2013个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示:在正方体中,设直线与平面所成角为,二面角的大小为,则为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是预测到的某地5月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择5月1日至5月13日中的某一天到达该市,并停留2天

(1)求此人到达当日空气质量优良的概率;
(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望
(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着支付宝、微信等支付方式的上线,越来越多的商业场景可以实现手机支付.有关部门为了了解各年龄段的人使用手机支付的情况,随机调查了50次商业行为,并把调查结果制成下表:

年龄(岁)

频数

5

10

15

10

5

5

手机支付

4

6

10

6

2

0

(1)若把年龄在的人称为中青年,年龄在的人称为中老年,请根据上表完成以下列联表;并判断是否可以在犯错误的概率不超过0.05的前提下,认为使用手机支付与年龄(中青年、中老年)有关系?

手机支付

未使用手机支付

总计

中青年

中老年

总计

(2)若从年龄在的被调查中随机选取2人进行调查,记选中的2人中,使用手机支付的人数为,求的分布列及数学期望.

参考公式:,其中.

独立性检验临界值表:

0.15

0.10

0.005

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016915,天宫二号实验室发射成功借天宫二号东风,某厂推出品牌为玉兔的新产品生产玉兔的固定成本为20000元,每生产一件玉兔需要增加投入100根据初步测算,总收益单位:元满足分段函数,其中玉兔的月产量单位:件,总收益=总成本+利润

I试将利润元表示为月产量的函数;

II当月产量为多少件时利润最大?最大利润是多少?

查看答案和解析>>

同步练习册答案