【题目】(本小题满分12分)
已知,函数.
(I)当为何值时, 取得最大值?证明你的结论;
(II) 设在上是单调函数,求的取值范围;
(III)设,当时, 恒成立,求的取值范围.
【答案】(Ⅰ)答案见解析;(Ⅱ) ;(Ⅲ).
【解析】试题分析:(I)求得f’(x)=[-x2+2(a-1)x+2a]ex,取得-x2+2(a-1)x+2a=0的根,即可得到数列的单调性,进而求解函数的最大值.
(II)由(I)知,要使得在[-1,1]上单调函数,则:,即可求解a的取值范围;
(III)由,分类参数得,构造新函数(x≥1),利用导数求得函数h(x)的单调性和最值,即得到a的取值范围.
试题解析:
(I)∵, ,
∴,
由得,
则,
∴在和上单调递减,在上单调递增,
又时,且在上单调递增,
∴,
∴有最大值,当时取最大值.
(II)由(I)知:
,
或,
或;
(III)当x≥1时f(x)≤g(x),即(-x2+2ax)ex,
,
令,则,
∴h(x)在上单调递增,
∴x≥1时h(x)≥h(1)=1,
,又a≥0所以a的取值范围是.
科目:高中数学 来源: 题型:
【题目】中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔仔细算相还”,其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,则该人第五天走的路程为( )
A. 6里B. 12里C. 24里D. 48里
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学餐饮中心为了了解新生的饮食习惯,在某学院大一年级名学生中进行了抽样调查,发现喜欢甜品的占.这名学生中南方学生共人。南方学生中有人不喜欢甜品.
(1)完成下列列联表:
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | |||
北方学生 | |||
合计 |
(2)根据表中数据,问是否有的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(3)已知在被调查的南方学生中有名数学系的学生,其中名不喜欢甜品;有名物理系的学生,其中名不喜欢甜品.现从这两个系的学生中,各随机抽取人,记抽出的人中不喜欢甜品的人数为,求的分布列和数学期望.
附:.
0.15 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象如图所示,则下列说法正确的是( )
A. 函数的周期为
B. 函数在上单调递增
C. 函数的图象关于点对称
D. 把函数的图象向右平移个单位,所得图象对应的函数为奇函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(wx+φ)(w>0,0<φ<π)的周期为π,图象的一个对称中心为( ,0),将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个 单位长度后得到函数g(x)的图象.
(1)求函数f(x)与g(x)的解析式
(2)是否存在x0∈( ),使得f(x0),g(x0),f(x0)g(x0)按照某种顺序成等差数列?若存在,请确定x0的个数,若不存在,说明理由;
(3)求实数a与正整数n,使得F(x)=f(x)+ag(x)在(0,nπ)内恰有2013个零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是预测到的某地5月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择5月1日至5月13日中的某一天到达该市,并停留2天
(1)求此人到达当日空气质量优良的概率;
(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望
(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着支付宝、微信等支付方式的上线,越来越多的商业场景可以实现手机支付.有关部门为了了解各年龄段的人使用手机支付的情况,随机调查了50次商业行为,并把调查结果制成下表:
年龄(岁) | ||||||
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
手机支付 | 4 | 6 | 10 | 6 | 2 | 0 |
(1)若把年龄在的人称为中青年,年龄在的人称为中老年,请根据上表完成以下列联表;并判断是否可以在犯错误的概率不超过0.05的前提下,认为使用手机支付与年龄(中青年、中老年)有关系?
手机支付 | 未使用手机支付 | 总计 | |
中青年 | |||
中老年 | |||
总计 |
(2)若从年龄在的被调查中随机选取2人进行调查,记选中的2人中,使用手机支付的人数为,求的分布列及数学期望.
参考公式:,其中.
独立性检验临界值表:
0.15 | 0.10 | 0.005 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年9月15日,天宫二号实验室发射成功.借天宫二号东风,某厂推出品牌为“玉兔”的新产品.生产“玉兔”的固定成本为20000元,每生产一件“玉兔”需要增加投入100元.根据初步测算,总收益(单位:元)满足分段函数,其中,是“玉兔”的月产量(单位:件),总收益=总成本+利润.
(I)试将利润元表示为月产量的函数;
(II)当月产量为多少件时利润最大?最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com