分析 (1)化简函数f(x),由x=x0是函数y=f(x)图象的一条对称轴,得出x0的值,计算g(x0)即可;
(2)求出函数h(x)的解析式,利用正弦函数的图象与性质求出它的单调递增区间.
解答 解:函数f(x)=1-cos2(x-$\frac{5π}{12}$)
=sin2(x-$\frac{5π}{12}$)
=$\frac{1-cos(2x-\frac{5π}{6})}{2}$
=$\frac{1}{2}$+$\frac{1}{2}$cos(2x+$\frac{π}{6}$),
g(x)=1+$\frac{1}{2}$sin2x;
(1)∵x=x0是函数y=f(x)图象的一条对称轴,
∴x0=$\frac{kπ}{2}$-$\frac{π}{12}$,k∈Z,
∴g(x0)=1+$\frac{1}{2}$sin(kπ-$\frac{π}{6}$)=$\frac{3}{4}$或$\frac{5}{4}$;
(2)函数h(x)=f(x)+g(x)
=$\frac{3}{2}$+$\frac{1}{2}$sin(2x+$\frac{π}{3}$),
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,
解得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,k∈Z,
所以f(x)的单调递增区间是[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z.
点评 本题考查了三角函数的化简与运算问题,也考查了正弦函数的图象与性质的应用问题,是基础题目.
科目:高中数学 来源: 题型:选择题
| A. | 2f(1)>f(2) | B. | 2f(2)>f(1) | C. | f(1)>f(2) | D. | f(1)<f(2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等腰三角形 | B. | 直角三角形 | C. | 等边三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 18π | B. | 18 | C. | 9π | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 2 | 3 | 4 | 5 | 6 | 7 | … |
| 3 | 5 | 7 | 9 | 11 | 13 | … |
| 4 | 7 | 10 | 13 | 16 | 19 | … |
| 5 | 9 | 13 | 17 | 21 | 25 | … |
| 6 | 11 | 16 | 21 | 26 | 31 | … |
| 7 | 13 | 19 | 25 | 31 | 37 | … |
| … | … | … | … | … | … | … |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com