精英家教网 > 高中数学 > 题目详情

已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=.
(1)求a、b的值及函数f(x)的解析式;
(2)若不等式f(2x)-k·2x≥0在x∈[-1,1]时有解,求实数k的取值范围.

(1)a=1,b=0,g(x)=x2-2x+1,f(x)=x+-2.(2)(-∞,1]

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

定义:对于函数,若存在非零常数,使函数对于定义域内的任意实数,都有,则称函数是广义周期函数,其中称为函数的广义周期,称为周距.
(1)证明函数是以2为广义周期的广义周期函数,并求出它的相应周距的值;
(2)试求一个函数,使为常数,)为广义周期函数,并求出它的一个广义周期和周距
(3)设函数是周期的周期函数,当函数上的值域为时,求上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求曲线在点处的切线方程;
(2)求的极值;
(3)若函数的图象与函数的图象在区间上有公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=(ax2+x)ex,其中e是自然数的底数,a∈R.
(1)当a<0时,解不等式f(x)>0;
(2)若f(x)在[-1,1]上是单调函数,求a的取值范围;
(3)当a=0时,求整数k的所有值,使方程f(x)=x+2在[k,k+1]上有解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求下列函数的值域:
(1) y=x-
(2) y=x2-2x-3,x∈(-1,4];
(3) y=,x∈[3,5];
(4) y= (x>1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)解关于的不等式
(2)若在区间上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数y=f(x)的图象如图所示,请根据已知图象作出下列函数的图象:
①y=f(x+1);②y=f(x)+2;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设a∈R,f(x)= (x∈R),试确定a的值,使f(x)为奇函数;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

作函数的y=图象;

查看答案和解析>>

同步练习册答案