| A. | 1或2 | B. | 2 | C. | 1或0 | D. | 0或1或2 |
分析 函数f(x)=$\frac{1}{2}$x2-|x-2a|有三个或者四个零点可化为函数m(x)=$\frac{1}{2}$x2与函数h(x)=|x-2a|有三个或者四个不同的交点,作图象确定a的取值范围,从而确定函数g(x)=ax2+4x+1的零点个数.
解答 解:∵函数f(x)=$\frac{1}{2}$x2-|x-2a|有三个或者四个零点,
∴函数m(x)=$\frac{1}{2}$x2与函数h(x)=|x-2a|有三个或者四个不同的交点,
作函数m(x)=$\frac{1}{2}$x2与函数h(x)=|x-2a|的图象如下,
,
结合图象可知,-0.5≤2a≤0.5,
故-$\frac{1}{4}$≤a≤$\frac{1}{4}$,
当a=0时,函数g(x)=ax2+4x+1有一个零点,
当a≠0时,△=16-4a>0,
故函数g(x)=ax2+4x+1有两个零点,
故选A.
点评 本题考查了数形结合的思想应用及函数的零点与方程的根的关系应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com