精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2+px+q,p,q∈R.
(Ⅰ)若p+q=3,当x∈[-2,2]时,f(x)≥0恒成立,求p的取值范围;
(Ⅱ)若不等式|f(x)|>2在区间[1,5]上无解,试求所有的实数对(p,q).
考点:二次函数的性质
专题:函数的性质及应用
分析:(Ⅰ)由p+q=3便可得到f(x)=x2+px+3-p,讨论判别式△的取值,从而判断f(x)≥0解的情况:△=p2-4(3-p)≤0,即-6≤p≤2时,f(x)≥0满足在[-2,2]上恒成立;△=p2-4(3-p)>0,即p<-6,或p>2时,对于方程x2+px+3-p=0的两根,大根
-p+
p2-4(3-p)
2
≤-2
,或小根
-p-
p2-4(3-p)
2
≥2
,所以通过解不等式求出△>0时p的取值范围,再合并-6≤p≤2即可得到p的取值范围;
(Ⅱ)若不等式|f(x)|>2在区间[1,5]上无解,则必须
|f(1)|≤2
|f(5)|≤2
,(1),然后通过解该不等式组能够得出p的取值范围,并求出-
p
2
的范围,可判断f(x)的对称轴在区间[1,5]上,所以f(x)在[1,5]上的最小值f(-
p
2
)≥-2,该不等式结合不等式组(1)通过求p的取值范围,能够求出p=-6,将p带入前面不等式,同样通过求q的范围能够得到q=7,所以便得到满足条件的实数对只一对为(-6,7).
解答: 解:(Ⅰ)∵p+q=3,∴q=3-p;
∴f(x)=x2+px+3-p;
x∈[-2,2]时,f(x)≥0恒成立:
(1)若△=p2-4(3-p)≤0,即-6≤p≤2时,f(x)满足该条件;
(2)若△=p2-4(3-p)>0,即p<-6,或p>2时,则p需满足:
-p+
p2-4(3-p)
2
≤-2
,或
-p-
p2-4(3-p)
2
≥2

解得-7≤p≤-4,∴-7≤p<-6;
综合(1)(2)得-7≤p≤2;
∴p的取值范围是[-7,2];
(Ⅱ)要使|f(x)|>2在区间[1,5]上无解,则需满足:
-2≤f(1)≤2
-2≤f(5)≤2
,即
-2≤1+p+q≤2
-2≤25+5p+q≤2
(3);
-2≤-1-p-q≤2
-2≤25+5p+q≤2

①+②得-7≤p≤-5;
f(x)的对称轴为x=-
p
2
5
2
≤-
p
2
7
2

∴f(x)的对称轴在区间[1,5]内;
∴要使|f(x)|>2,在区间[1,5]上无解,还需满足:
f(-
p
2
)≥-2
,即
4q-p2
4
≥-2
,即q
p2
4
-2

结合(3)可得到p,q需满足:
-2≤1+p+q≤2
-2≤25+5p+q≤2
q≥
p2
4
-2
,解该不等式组得:
p=-6,带入该不等式组可得q=7;
所以满足题意的实数对(p,q)只有一对:(-6,7).
点评:考查一元二次不等式解的情况和判别式△的关系,一元二次方程的求根公式,以及二次函数的对称轴,及顶点处的函数值,可结合二次函数f(x),|f(x)|图象求解本题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax-a+1,(a>0且a≠1)恒过定点(3,2),若将函数f(x)的图象向下平移1个单位,再向左平移a个单位后得到函数g(x);
(1)求实数a的值与g(x)的解析式;
(2)求函数h(x)=
g(x)-1
g(x)+1
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=log1.20.9,b=1.10.8,则a,b的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差为-1,首项为正数,将数列{an}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{bn}的前3项,
(Ⅰ)求数列{an}的通项公式an与前n项和Sn
(Ⅱ)是否存在三个不等正整数m,n,p,使m,n,p成等差数列且Sm,Sn,Sp成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a7=4,a19=2a9
(1)求{an}的通项公式;
(2)设bn=
1
2nan
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=2,a2=1,an+2-5an+1+an=0(n∈N*),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程|x2-2x-4|=a有三个不相等的实数解,则实数a的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图中样本数据平均数的估计值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+
1
x
,x>0
3x+a,x≤0
,若关于x的方程f(x2+2x)=3有五个不同的实数解,则实数a的值为
 

查看答案和解析>>

同步练习册答案