精英家教网 > 高中数学 > 题目详情

【题目】观察下列三角形数表:
假设第n行的第二个数为
(1)归纳出an+1与an的关系式,并求出an的通项公式;
(2)设anbn=1(n≥2),求证:b2+b3+…+bn<2.

【答案】
(1)解:依题意an+1=an+n(n≥2),a2=2,

所以


(2)解:因为anbn=1,所以
【解析】(1)利用数列的关系归纳出an+1与an的关系式,利用累加法求解即可.(2)利用放缩法化简通项公式,通过裂项消项法求解即可.
【考点精析】利用数列的前n项和和归纳推理对题目进行判断即可得到答案,需要熟知数列{an}的前n项和sn与通项an的关系;根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=4x与点M(0,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若 =0,则k=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题,其中正确的命题是____.(填出所有正确命题的序号)

x=y=sin2x+)的一条对称轴;

y=esin2x是以π为周期在(0)上的增函数;

③函数y=3sin2x+)的图象可由y=3sin2x的图象向左平移个单位得到.

④设x1x2是关于x的方程|logax|=ka0a≠1k0)的两根,则x1x2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解本校学生在校小卖部的月消费情况,随机抽取了60名学生进行统计.得到如下样本频数分布表:

月消费金额(单位:元)

人数

30

6

9

10

3

2

记月消费金额不低于300元为“高消费”,已知在样本中随机抽取1人,抽到是男生“高消费”的概率为.

(1)从月消费金额不低于400元的学生中随机抽取2人,求至少有1人月消费金额不低于500元的概率;

(2)请将下面的列联表补充完整,并判断是否有的把握认为“高消费”与“男女性别”有关,说明理由.

高消费

非高消费

合计

男生

女生

25

合计

60

下面的临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中,其中)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆轴交于 两点,且

(1)求椭圆的方程;

(2)设点是椭圆上的一个动点,且直线与直线分别交于 两点.是否存在点使得以 为直径的圆经过点?若存在,求出点的横坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生的学习情况,某学校在一次考试中随机抽取了20名学生的成绩,分成[50,60),[60,70),[70,80),[80,90),[90,100]五组,绘制了如图所示频率分布直方图.求:

(Ⅰ)图中m的值;

(II)估计全年级本次考试的平均分;

(III)若从样本中随机抽取分数在[80,100]的学生两名,求所抽取两人至少有一人分数不低于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照分成5组,制成如图所示频率分直方图.

(1)求图中x的值;

(2)求这组数据的平均数和中位数;

(3)已知满意度评分值在内的男生数与女生数的比为,若在满意度评分值为的人中随机抽取2人进行座谈,求2人均为男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据悉,2017年教育机器人全球市场规模已达到8.19亿美元,中国占据全球市场份额10.8%.通过简单随机抽样得到40家中国机器人制造企业,下图是40家企业机器人的产值频率分布直方图.

(1)求的值;

(2)在上述抽取的40个企业中任取3个,抽到产值小于500万元的企业不超过两个的概率是多少?

(3)在上述抽取的40个企业中任取2个,设为产值不超过500万元的企业个数减去超过500万元的企业个数的差值,求的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2xx∈R.

(1)当m取何值时,方程|f(x)-2|=m有一个解?两个解?

(2)若不等式[f(x)]2f(x)-m>0在R上恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案