精英家教网 > 高中数学 > 题目详情

【题目】据悉,2017年教育机器人全球市场规模已达到8.19亿美元,中国占据全球市场份额10.8%.通过简单随机抽样得到40家中国机器人制造企业,下图是40家企业机器人的产值频率分布直方图.

(1)求的值;

(2)在上述抽取的40个企业中任取3个,抽到产值小于500万元的企业不超过两个的概率是多少?

(3)在上述抽取的40个企业中任取2个,设为产值不超过500万元的企业个数减去超过500万元的企业个数的差值,求的分布列及期望.

【答案】(1);(2);(3).

【解析】分析:(1)根据频率分布直方图各矩形的面积和为可计算出.

(2)根据频率分布直方图计算出产值小于500万元的企业共个,因此所求的概率为

(3)可取,运用超几何分布可以计算取各值的概率,从而得到其分布列和期望.

详解:(1)根据频率分布直方图可知,

产值小于500万元的企业个数为:

所以抽到产值小于500万元的企业不超过两个的概率为

(3)的所有可能取值为

的分布列为:

期望为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】f(x)是定义在R上的奇函数xyR都有f(xy)f(x)f(y)且当x>0f(x)<0f(1)2.

(1)求证:f(x)为奇函数;

(2)求证:f(x)R上的减函数;

(3)f(x)[24]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列三角形数表:
假设第n行的第二个数为
(1)归纳出an+1与an的关系式,并求出an的通项公式;
(2)设anbn=1(n≥2),求证:b2+b3+…+bn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≥ 对任意实数a≠0恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,且当时, .现已画出函数轴左侧的图象,如图所示,并根据图象:

(1)直接写出函数 的增区间;

(2)写出函数 的解析式;

(3)若函数 ,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数h(x)=(m2-5m+1)xm+1为幂函数,且为奇函数.

(I)求m的值;

(II)求函数g(x)=h(x)+x的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若D′是平面α外一点,则下列命题正确的是(
A.过D′只能作一条直线与平面α相交
B.过D′可作无数条直线与平面α垂直
C.过D′只能作一条直线与平面α平行
D.过D′可作无数条直线与平面α平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数,),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)写出曲线的普通方程和曲线的直角坐标方程;

(2)已知点是曲线上一点,若点到曲线的最小距离为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某二手交易市场对某型号的二手汽车的使用年数)与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:

使用年数

2

4

6

8

10

销售价格

16

13

9.5

7

4.5

(I)试求关于的回归直线方程.

(参考公式:

(II)已知每辆该型号汽车的收购价格为万元,根据(I)中所求的回归方程,预测为何值时,销售一辆该型号汽车所获得的利润最大?(利润=销售价格-收购价格)

查看答案和解析>>

同步练习册答案