精英家教网 > 高中数学 > 题目详情

【题目】若D′是平面α外一点,则下列命题正确的是(
A.过D′只能作一条直线与平面α相交
B.过D′可作无数条直线与平面α垂直
C.过D′只能作一条直线与平面α平行
D.过D′可作无数条直线与平面α平行

【答案】D
【解析】解:观察正方体,A、过D′可以能作不止一条直线与平面α相交,故A错;
B、过D′只可作一数条直线与平面α垂直,故B错;
C、过D′能作不止一条直线与平面α平行,故C错;
D、过平面外一点有且只有一个平面与已知平面平行,
且这个平面内的任一条直线都与已知平面平行,故D对.
故选D.

【考点精析】关于本题考查的空间中直线与平面之间的位置关系,需要了解直线在平面内—有无数个公共点;直线与平面相交—有且只有一个公共点;直线在平面平行—没有公共点才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列四个命题,其中正确的命题是____.(填出所有正确命题的序号)

x=y=sin2x+)的一条对称轴;

y=esin2x是以π为周期在(0)上的增函数;

③函数y=3sin2x+)的图象可由y=3sin2x的图象向左平移个单位得到.

④设x1x2是关于x的方程|logax|=ka0a≠1k0)的两根,则x1x2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照分成5组,制成如图所示频率分直方图.

(1)求图中x的值;

(2)求这组数据的平均数和中位数;

(3)已知满意度评分值在内的男生数与女生数的比为,若在满意度评分值为的人中随机抽取2人进行座谈,求2人均为男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据悉,2017年教育机器人全球市场规模已达到8.19亿美元,中国占据全球市场份额10.8%.通过简单随机抽样得到40家中国机器人制造企业,下图是40家企业机器人的产值频率分布直方图.

(1)求的值;

(2)在上述抽取的40个企业中任取3个,抽到产值小于500万元的企业不超过两个的概率是多少?

(3)在上述抽取的40个企业中任取2个,设为产值不超过500万元的企业个数减去超过500万元的企业个数的差值,求的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数.

(1)若极大值;

(2)若无零点,求实数的取值范围;

(3)若有两个相异零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知符号函数sgnx= ,f(x)是R上的增函数,g(x)=f(x)﹣f(ax)(a>1),则(
A.sgn[g(x)]=sgnx
B.sgn[g(x)]=﹣sgnx
C.sgn[g(x)]=sgn[f(x)]
D.sgn[g(x)]=﹣sgn[f(x)]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,为等边三角形,且平面平面.的中点,的中点,过点的平面交.

(1)求证:平面

(2)若时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2xx∈R.

(1)当m取何值时,方程|f(x)-2|=m有一个解?两个解?

(2)若不等式[f(x)]2f(x)-m>0在R上恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD外接于圆,AC是圆周角∠BAD的角平分线,过点C的切线与AD延长线交于点E,AC交BD于点F.

(1)求证:BD∥CE;
(2)若AB是圆的直径,AB=4,DE=1,求AD的长度.

查看答案和解析>>

同步练习册答案