精英家教网 > 高中数学 > 题目详情
已知圆(x+1)2+y2=16,圆心为C(-1,0),点A(1,0),Q为圆上任意一点,AQ的垂直平分线交CQ于点M,则点M的轨迹方程为______.
由圆的方程可知,圆心C(-1,0),半径等于4,设点M的坐标为(x,y ),
∵AQ的垂直平分线交CQ于M,
∴|MA|=|MQ|.
又|MQ|+|MC|=4(半径),
∴|MC|+|MA|=4>|AC|=2.
∴点M满足椭圆的定义,且2a=4,2c=2,
∴a=2,c=1,
b=
a2-c2
=
3

∴点M的轨迹方程为
x2
4
+
y2
3
=1

故答案为:
x2
4
+
y2
3
=1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两个焦点坐标分别是,并且经过点,求它的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点A(-
2
,0),B(
2
,0)
,P是平面内的一个动点,直线PA与PB交于点P,且它们的斜率之积是-
1
2

(Ⅰ)求动点P的轨迹C的方程,并求出曲线C的离心率的值;
(Ⅱ)设直线l:y=kx+1与曲线C交于M、N两点,当线段MN的中点在直线x+2y=0上时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.
(1)求C的方程;
(2)若直线l:y=kx+m与曲线C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设x,y∈R,若向量
a
=(x,y+2)
b
=(x,y-2)
,且|
a
|-|
b
|=2
,则点M(x,y)的轨迹C的方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C1:x2+y2-4x+3=0,圆C2:x2+y2-8y+15=0,动点P到圆C1,C2上点的距离的最小值相等.
(1)求点P的轨迹方程;
(2)直线l:mx-(m2+1)y=4m,m∈R,是否存在m值使直线l被圆C1所截得的弦长为
6
3
,若存在,求出m值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若△ABC的个顶点坐标A(-4,0)、B(4,0),△ABC的周长为18,则顶点C的轨迹方程为(  )
A.
x2
25
+
y2
9
=1
B.
y2
25
+
x2
9
=1
(y≠0)
C.
x2
16
+
y2
9
=1
(y≠0)
D.
x2
25
+
y2
9
=1
(y≠0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知垂直竖在水平地面上相距20米的两根旗杆的高分别为10米和15米,地面上的动点P到两旗杆顶点的仰角相等,则点P的轨迹是(  )
A.椭圆B.圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动圆过定点(1,0),且与直线x=-1相切.
(1)求动圆的圆心轨迹C的方程;
(2)是否存在直线l,使l过点(0,1),并与轨迹C交于P,Q两点,且满足
OP
OQ
=0
?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案