精英家教网 > 高中数学 > 题目详情
已知点A(-
2
,0),B(
2
,0)
,P是平面内的一个动点,直线PA与PB交于点P,且它们的斜率之积是-
1
2

(Ⅰ)求动点P的轨迹C的方程,并求出曲线C的离心率的值;
(Ⅱ)设直线l:y=kx+1与曲线C交于M、N两点,当线段MN的中点在直线x+2y=0上时,求直线l的方程.
(Ⅰ)设点P(x,y),∴kPA=
y
x+
2
kPB=
y
x-
2

则由已知得:
y
x+
2
y
x-
2
=-
1
2

整理得
x2
2
+y2=1
(x≠±
2
)

∴求得的曲线C的方程为
x2
2
+y2=1(x≠±
2
)

a2=2,b2=1,∴c=
2-1
=1

∴e=
c
a
=
1
2
=
2
2

(Ⅱ)设M(x1,y1),N(x2,y2),MN的中点(x0,y0),
x12+2y12=2
x22+2y22=2

①-②得,(
x21
-
x22
)+2(
y21
-
y22
)=0

(x1+x2)+2(y1+y2)•(
y1-y2
x1-x2
)=0
(x1≠x2),
又x1+x2=2x0,y1+y2=2y0
∴x0+2y0•k=0,
又∵x0+2y0=0,
以上两式联立解得直线l的斜率k=1.
∴直线l的方程为y=x+1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

圆C的方程为(x-2)2+y2=4,圆M的方程为(x-2-5sinθ)2+(y-5cosθ)2=1(θ∈R),过圆C上任意一点P作圆M的两条切线PE、PF,切点分别为E、F,则
PE
PF
的最小值是(  )
A.6B.
56
9
C.7D.
65
9

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程x=
1-y2
表示的曲线是(  )
A.一条射线B.一个圆C.两条射线D.半个圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若a≠b,且ab≠0,则曲线bx-y+a=0和ax2+by2=ab的形状大致是如图中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面上动点P到定点F(1,0)的距离比P到y轴的距离大1,则动点P的轨迹方程为(  )
A.y2=2xB.y2=4x
C.y2=2x或
y=0
x≤0
D.y2=4x或
y=0
x≤0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一条曲线在x轴的上方,它上面的每一点到点A(0,2)的距离减去它到x轴的距离的差都是2,求这条曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A(-1,0),B(2,0),动点M(x,y)满足
|MA|
|MB|
=
1
2
,设动点M的轨迹为C.
(1)求动点M的轨迹方程,并说明轨迹C是什么图形;
(2)求动点M与定点B连线的斜率的最小值;
(3)设直线l:y=x+m交轨迹C于P,Q两点,是否存在以线段PQ为直径的圆经过A?若存在,求出实数m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知圆(x+1)2+y2=16,圆心为C(-1,0),点A(1,0),Q为圆上任意一点,AQ的垂直平分线交CQ于点M,则点M的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知半径为1的动圆与圆(x-5)2+(y+7)2=16相切,则动圆圆心的轨迹方程是(    )
A.(x-5)2+(y+7)2="25"B.(x-5)2+(y+7)2=17或(x-5)2+(y+7)2=15
C.(x-5)2+(y+7)2="9"D.(x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9

查看答案和解析>>

同步练习册答案