精英家教网 > 高中数学 > 题目详情
已知圆O,直线l与椭圆C相交于PQ两点,O为原点.
(Ⅰ)若直线l过椭圆C的左焦点,且与圆O交于AB两点,且,求直线l的方程;
(Ⅱ)如图,若重心恰好在圆上,求m的取值范围.
(1)(2)

试题分析:解(Ⅰ)左焦点坐标为,设直线l的方程为
得,圆心O到直线l的距离
,∴,解得,.∴ 直线l的方程为
(Ⅱ)设

,得…(※),且
重心恰好在圆上,得
,即
,化简得,代入(※)得

, 得,∴
,得m的取值范围为
点评:解决的关键是根据直线与圆锥曲线的位置关系,联立方程组来结合韦达定理来得到,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,F1,F2是离心率为的椭圆
C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1 : 3.设A,B是C上的两个动点,线段AB的中点M在直线l上,线段AB的中垂线与C交于P,Q两点.

(Ⅰ) 求椭圆C的方程;
(Ⅱ) 是否存在点M,使以PQ为直径的圆经过点F2,若存在,求出M点坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,过抛物线的焦点F的直线依次交抛物线及其准线于点A、B、C,若|BC |=2|BF|,且|AF|=3,则抛物线的方程是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线与抛物线有一个公共的焦点,且两曲线的一个交点为,若,则双曲线的渐近线方程为.
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以双曲线的离心率为首项,以函数的零点为公比的等比数列的前项的和
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点是抛物线的准线与双曲线的两条渐近线所围成的三角形平面区域内(含边界)的任意一点,则的最大值为_    __.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的左、右焦点分别为,已知椭圆上的任意一点,满足,过作垂直于椭圆长轴的弦长为3.

(1)求椭圆的方程;
(2)若过的直线交椭圆于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的左焦点为F,直线x=m与椭圆相交于点A、B,当△FAB的周长最大时,△FAB的面积是   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知为双曲线的左准线与x轴的交点,点,若满足的点在双曲线上,则该双曲线的离心率为    .

查看答案和解析>>

同步练习册答案