精英家教网 > 高中数学 > 题目详情
2.求证:1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<2.

分析 1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<1+$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{(n-1)n}$,再裂项,即可证明结论.

解答 证明:∵1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<1+$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{(n-1)n}$
=1+1-$\frac{1}{2}$+$\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{n-1}$-$\frac{1}{n}$=2-$\frac{1}{n}$<2,
∴1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<2.

点评 本题考查用放缩法证明不等式,掌握好放缩的程度,是解题的难点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.如图,在棱长为1正四面体S-ABC,O是四面体的中心,平面PQR∥平面ABC,设SP=x(0≤x≤1),三棱锥O-PQR的体积为V=f(x),其导函数y=f(x)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.从12班中选两个班去参加一项活动,已知1班已确定要参加,另外一个班是这样决定的:扔两个筛子得到的点数之和是几,就选几班,这样做公平吗?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在直角坐标系xOy中,曲线C1和C2的参数方程分别为$\left\{\begin{array}{l}{x=cosθ+sinθ}\\{y=cosθ-sinθ}\end{array}\right.$(θ为参数)和$\left\{\begin{array}{l}{x=2-t}\\{y=t}\end{array}\right.$(t为参数).以原点O为极点,x轴正半轴为极轴,建立极坐标系,则曲线C1与C2的交点的极坐标为$(\sqrt{2},\frac{π}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在四棱锥S-ABCD中,SA⊥平面ABCD,∠BAD=∠ABC=90°,SA=AB=AD=$\frac{1}{3}$BC=1,E为SD的中点.
(1)若F为线段BC上一点,且BF=$\frac{1}{6}$BC,求证:EF∥平面SAB;
(2)在线段BC上是否存在一点G,使得直线EG与平面SBC所成角的正弦值为$\frac{\sqrt{7}}{14}$?若存在,求出BG的长度,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知三棱锥P-ABC的四个顶点都在球O的球面上,若PA=AB=2,AC=1,∠BAC=120°,且PA⊥面ABC,则球O的表面积为$\frac{40}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=cosxcos(x+$\frac{π}{3}$).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,若f(c)=-$\frac{1}{4}$,a=2,且△ABC的面积为2$\sqrt{3}$,求边长c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数,f(x)=lnx+$\frac{k}{x}$,k∈R.
(1)若曲线y=f(x)在点(e,f(e))处的切线与直线x-2=0垂直,求f(x)的单调递减区间和极小值(其中e为自然对数的底数);
(2)若对任意x1>x2>0,f(x1)-f(x2)<x1-x2恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在极坐标系中,曲线ρ=2cosθ是(  )
A.过极点的直线B.半径为2 的圆
C.关于极点对称的图形D.关于极轴对称的图形

查看答案和解析>>

同步练习册答案