精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=cosxcos(x+$\frac{π}{3}$).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,若f(c)=-$\frac{1}{4}$,a=2,且△ABC的面积为2$\sqrt{3}$,求边长c的值.

分析 (1)由三角函数公式化简可得f(x)=$\frac{1}{2}$cos(2x+$\frac{π}{3}$)+$\frac{1}{4}$,由周期公式可得;
(2)结合(1)可得C=$\frac{π}{3}$,由题意和面积公式可得ab的值,进而由余弦定理可得c值.

解答 解:(1)化简可得f(x)=cosxcos(x+$\frac{π}{3}$)
=cosx($\frac{1}{2}$cosx-$\frac{\sqrt{3}}{2}$sinx)=$\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sinxcosx
=$\frac{1+cos2x}{4}$-$\frac{\sqrt{3}}{4}$sin2x=$\frac{1}{2}$cos(2x+$\frac{π}{3}$)+$\frac{1}{4}$,
∴f(x)的最小正周期T=$\frac{2π}{2}$=π;
(2)由题意可得f(C)=$\frac{1}{2}$cos(2C+$\frac{π}{3}$)+$\frac{1}{4}$=-$\frac{1}{4}$,
∴cos(2C+$\frac{π}{3}$)=-1,∴C=$\frac{π}{3}$,
又∵△ABC的面积S=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab=2$\sqrt{3}$,
∴ab=8,∴b=$\frac{8}{a}$=$\frac{8}{2}$=4,
由余弦定理可得c2=a2+b2-2abcosC=12,
∴c=2$\sqrt{3}$

点评 本题考查余弦定理,涉及三角函数的周期性和三角形的面积公式,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.抛物线y=x2上的点到直线y=2x-6的最短距离为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.是否存在常数a,b使等式$\frac{1}{1•3}$+$\frac{1}{3•5}$+…$\frac{1}{(2n-1)(2n+1)}$=$\frac{n}{an+b}$对一切正整数n都成立?如存在,求出a,b的值;如不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求证:1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的焦距为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,某市有一条东西走向的公路l,现欲经过公路l上的O处铺设一条南北走向的公路m.在施工过程中发现在O处的正北1百米的A处有一汉代古迹.为了保护古迹,该市决定以A为圆心,1百米为半径设立一个圆形保护区.为了连通公路l、m,欲再新建一条公路PQ,点P、Q分别在公路l、m上,且要求PQ与圆A相切.
(1)当P距O处2百米时,求OQ的长;
(2)当公路PQ长最短时,求OQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}+cosθ}\\{y=\frac{\sqrt{2}}{2}+sinθ}\end{array}\right.$(θ是参数),直线l的极坐标方程为$θ=\frac{π}{12}$(ρ∈R)
(Ⅰ)求C的普通方程与极坐标方程;
(Ⅱ)设直线l与圆C相交于A,B两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=$\left\{\begin{array}{l}{2{x}^{2}-1,(x≤0)}\\{lo{g}_{2}x,(x>0)}\end{array}\right.$,则不等式f(x)<1的解集是(  )
A.(-1,2)B.(-∞,2)C.(1,+∞)D.(-∞,-1)∩(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知某个几何体的三视图如图,根据图中标出的尺寸,可得这个几何体的体积等于$\frac{8}{3}$,全面积为2(3+$\sqrt{2}$+$\sqrt{5}$).

查看答案和解析>>

同步练习册答案