分析 (1)由三角函数公式化简可得f(x)=$\frac{1}{2}$cos(2x+$\frac{π}{3}$)+$\frac{1}{4}$,由周期公式可得;
(2)结合(1)可得C=$\frac{π}{3}$,由题意和面积公式可得ab的值,进而由余弦定理可得c值.
解答 解:(1)化简可得f(x)=cosxcos(x+$\frac{π}{3}$)
=cosx($\frac{1}{2}$cosx-$\frac{\sqrt{3}}{2}$sinx)=$\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sinxcosx
=$\frac{1+cos2x}{4}$-$\frac{\sqrt{3}}{4}$sin2x=$\frac{1}{2}$cos(2x+$\frac{π}{3}$)+$\frac{1}{4}$,
∴f(x)的最小正周期T=$\frac{2π}{2}$=π;
(2)由题意可得f(C)=$\frac{1}{2}$cos(2C+$\frac{π}{3}$)+$\frac{1}{4}$=-$\frac{1}{4}$,
∴cos(2C+$\frac{π}{3}$)=-1,∴C=$\frac{π}{3}$,
又∵△ABC的面积S=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab=2$\sqrt{3}$,
∴ab=8,∴b=$\frac{8}{a}$=$\frac{8}{2}$=4,
由余弦定理可得c2=a2+b2-2abcosC=12,
∴c=2$\sqrt{3}$
点评 本题考查余弦定理,涉及三角函数的周期性和三角形的面积公式,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,2) | B. | (-∞,2) | C. | (1,+∞) | D. | (-∞,-1)∩(2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com