精英家教网 > 高中数学 > 题目详情

若函数
(Ⅰ)当时,求函数的单调增区间;
(Ⅱ)函数是否存在极值.

(1)函数的单调增区间为
(2)当时,函数存在极值;当时,函数不存在极值

解析试题分析:解:(1)由题意,函数的定义域为     2分
时,    3分
,即,得    5分
又因为,所以,函数的单调增区间为   6分
(2)   7分
解法一:令,因为对称轴,所以只需考虑的正负,
时,在(0,+∞)上
在(0,+∞)单调递增,无极值    10分
时,在(0,+∞)有解,所以函数存在极值.…12分
综上所述:当时,函数存在极值;当时,函数不存在极值.…14分
解法二:令,记
时,在(0,+∞)单调递增,无极值    9分
时,解得:
,列表如下:


(0,

,+∞)

­—
0
+


极小值
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数f(x)=(x _ 1)ex _ kx2(k∈R).
(Ⅰ)当k=1时,求函数f(x)的单调区间;
(Ⅱ)当k∈(1/2,1]时,求函数f(x)在[0,k]上的最大值M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 , .  
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,求函数的单调区间;
(Ⅲ)当时,函数上的最大值为,若存在,使得成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)试问函数能否在处取得极值,请说明理由;
(Ⅱ)若,当时,函数的图像有两个公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的导数满足,其中
求曲线在点处的切线方程;
,求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在区间[0,1]上是增函数,在区间上是减函数,又.
(1) 求的解析式;
(2) 若在区间(m>0)上恒有x成立,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,若在区间上的最小值为-2,求实数的取值范围;
(3)若对任意,且恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的最大值;
(Ⅱ)若对任意,不等式恒成立,求实数的取值范围;
(Ⅲ)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数在区间上是增函数,在区间上是减函数,又
(1)求的解析式;
(2)若在区间上恒有成立,求的取值范围

查看答案和解析>>

同步练习册答案