精英家教网 > 高中数学 > 题目详情
17.圆x2+y2-2x-8y+13=0与直线ax+y-1=0的相交所得弦长为2$\sqrt{3}$,则a=(  )
A.-$\frac{4}{3}$B.-$\frac{3}{4}$C.$\sqrt{3}$D.2

分析 由圆的方程,得到圆心与半径,再求得圆心到直线的距离,利用勾股定理解.

解答 解:圆的方程可化为(x-1)2+(y-4)2=4,所以圆心坐标为(1,4),由点到直线的距离公式得:
d=$\frac{|a+4-1|}{\sqrt{{a}^{2}+1}}$=1,解得a=-$\frac{4}{3}$,
故选A.

点评 本题考查直线和圆的位置关系,点到直线的距离公式的应用,正确运用勾股定理是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.直线2x-4y+7=0的斜率是(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆C:x2+y2-4x+3=0,
(1)求过M(3,2)点的圆的切线方程;
(2)直线l过点$N({\frac{3}{2},\frac{1}{2}})$且被圆C截得的弦长最短时,求直线l的方程;
(3)过点(1,0)的直线m与圆C交于不同的两点A、B,线段AB的中点P的轨迹为C1,直线$y=k(x-\frac{5}{2})$与曲线C1只有一个交点,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的一动点P到左、右两焦点F1,F2的距离之和为2$\sqrt{2}$,点P到椭圆一个焦点的最远距离为$\sqrt{2}$+1.
(Ⅰ)求椭圆的方程;
(Ⅱ)过右焦点F2的直线l交椭圆于A,B两点.
①若y轴上存在一点M(0,$\frac{1}{2}$)满足|MA|=|MB|,求直线l斜率k的值;
②是否存在这样的直线l,使S△ABO的最大值为$\frac{\sqrt{2}}{2}$(其中O为坐标原点)?若存在,求直线l方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.手表时针走过1小时,时针转过的角度(  )
A.60°B.-60°C.30°D.-30°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设i为虚数单位,复数z=(3+4i)(cosθ+isinθ),若$z∈R,θ≠kπ+\frac{π}{2}$,则tanθ的值为$-\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为2,那么双曲线的渐近线方程为(  )
A.$\sqrt{2}x±y=0$B.x±y=0C.2x±y=0D.$\sqrt{3}x±y=0$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给定集合S={x1,x2,…,xn}(n≥2,xk∈R且xk≠0,1≤k≤n),(且),定义点集T={(xi,xj)|xi∈S,xj∈S}.若对任意点A1∈T,存在点A2∈T,使得$\overrightarrow{O{A_1}}•\overrightarrow{O{A_2}}=0$(O为坐标原点),则称集合S具有性质P.给出以下四个结论:
①{-5,5}具有性质P;
②{-2,1,2,4}具有性质P;
③若集合S具有性质P,则S中一定存在两数xi,xj,使得xi+xj=0;
④若集合S具有性质P,xi是S中任一数,则在S中一定存在xj,使得xi+xj=0.
其中正确的结论有①③.(填上你认为所有正确的结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的焦距为$2\sqrt{5}$,且双曲线的一条渐近线方程为x-2y=0,则双曲线的方程为(  )
A.$\frac{x^2}{4}-{y^2}=1$B.$\frac{3{x}^{2}}{20}$-$\frac{3{y}^{2}}{5}$=1C.$\frac{{3{x^2}}}{20}-\frac{{3{y^2}}}{5}=1$D.$\frac{{3{x^2}}}{5}-\frac{{3{y^2}}}{20}=1$

查看答案和解析>>

同步练习册答案