·ÖÎö £¨I£©ÓÉÌâÒâ¿ÉµÃ£º2a=2$\sqrt{2}$£¬a+c=$\sqrt{2}$+1£¬¼°Æäa2=b2+c2£¬ÁªÁ¢½â³ö¼´¿ÉµÃ³ö£®
£¨II£©¢ÙÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=k£¨x-1£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£º£¨1+2k2£©x2-4k2x+2k2-2=0£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¡¢Öеã×ø±ê¹«Ê½¿ÉµÃÏß¶ÎABµÄÖеãG$£¨\frac{2{k}^{2}}{1+2{k}^{2}}£¬\frac{-k}{1+2{k}^{2}}£©$£®
¢Ùk=0ʱÂú×ãÌõ¼þ£®k¡Ù0ʱ£¬Âú×ã|MA|=|MB|£¬¡àkMG•k=-1£¬»¯Îª2k2-3k+1=0£¬½âµÃk£®
¢Úµ±x¡ÍxÖáʱ£¬Ö±ÏßlµÄ·½³ÌΪx=1£®´úÈëÍÖÔ²·½³Ì½âµÃy=$¡À\frac{\sqrt{2}}{2}$£¬¿ÉµÃS¡÷ABO=$\frac{\sqrt{2}}{2}$£¬´ËʱֱÏßlµÄ·½³ÌΪ£ºx=1£®µ±k=0ʱ£¬¡÷ABO²»´æÔÚ£¬ÉáÈ¥£®µ±k¡Ù0ʱ£¬¿ÉµÃS¡÷ABO=$\frac{1}{2}¡Á1¡Á|{y}_{1}-{y}_{2}|$=$\frac{1}{2}|k£¨{x}_{1}-1£©-k£¨{x}_{2}-1£©|$=$\frac{|k|}{2}|{x}_{1}-{x}_{2}|$=$\frac{1}{2}\sqrt{{k}^{2}}$$•\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$£¬»¯¼ò¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨I£©ÓÉÌâÒâ¿ÉµÃ£º2a=2$\sqrt{2}$£¬a+c=$\sqrt{2}$+1£¬¼°Æäa2=b2+c2£¬
½âµÃa=$\sqrt{2}$£¬c=1=b£¬
¡àÍÖÔ²µÄ·½³ÌΪ£º$\frac{{x}^{2}}{2}+{y}^{2}$=1£®
£¨II£©¢ÙÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=k£¨x-1£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬»¯Îª£º£¨1+2k2£©x2-4k2x+2k2-2=0£¬
¡àx1+x2=$\frac{4{k}^{2}}{1+2{k}^{2}}$£¬x1•x2=$\frac{2{k}^{2}-2}{1+2{k}^{2}}$£¬y1+y2=k£¨x1+x2-2£©=$\frac{-2k}{1+2{k}^{2}}$£®
¡àÏß¶ÎABµÄÖеãG$£¨\frac{2{k}^{2}}{1+2{k}^{2}}£¬\frac{-k}{1+2{k}^{2}}£©$£®
¢Ùk=0ʱÂú×ãÌõ¼þ£®
k¡Ù0ʱ£¬¡ßÂú×ã|MA|=|MB|£¬
¡àkMG•k=$\frac{\frac{-k}{1+2{k}^{2}}-\frac{1}{2}}{\frac{2{k}^{2}}{1+2{k}^{2}}-0}$•k=-1£¬»¯Îª2k2-3k+1=0£¬
½âµÃk=1»ò$\frac{1}{2}$£®
×ÛÉϿɵãºÂú×ãÌõ¼þµÄkµÄֵΪ0£¬1£¬$\frac{1}{2}$£®
¢Úµ±x¡ÍxÖáʱ£¬Ö±ÏßlµÄ·½³ÌΪx=1£®´úÈëÍÖÔ²·½³Ì½âµÃy=$¡À\frac{\sqrt{2}}{2}$£¬
¿ÉµÃS¡÷ABO=$\frac{\sqrt{2}}{2}$£¬´ËʱֱÏßlµÄ·½³ÌΪ£ºx=1£®
µ±k=0ʱ£¬¡÷ABO²»´æÔÚ£¬ÉáÈ¥£®
µ±k¡Ù0ʱ£¬¿ÉµÃS¡÷ABO=$\frac{1}{2}¡Á1¡Á|{y}_{1}-{y}_{2}|$=$\frac{1}{2}|k£¨{x}_{1}-1£©-k£¨{x}_{2}-1£©|$
=$\frac{|k|}{2}|{x}_{1}-{x}_{2}|$=$\frac{1}{2}\sqrt{{k}^{2}}$$•\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$
=$\frac{1}{2}\sqrt{{k}^{2}}$•$\sqrt{£¨\frac{4{k}^{2}}{1+2{k}^{2}}£©^{2}-4¡Á\frac{2{k}^{2}-2}{1+2{k}^{2}}}$=$\frac{\sqrt{2}}{\;}$$\sqrt{2}\sqrt{\frac{{k}^{2}£¨{k}^{2}+1£©}{£¨1+2{k}^{2}£©^{2}}}$=$\frac{\sqrt{2}}{2}$$\sqrt{\frac{{k}^{2}£¨{k}^{2}+1£©}{£¨{k}^{2}+\frac{1}{2}£©^{2}}}$£¼$\frac{\sqrt{2}}{2}$£®
¡àS¡÷ABO£¼$\frac{\sqrt{2}}{2}$£¬Òò´Ëk¡Ù0ʱ£¬²»´æÔÚ·ûºÏÌõ¼þµÄÖ±Ïßl£®
×ÛÉÏËùÊö£ºµ±ÇÒ½öµ±Ö±ÏßlµÄ·½³ÌΪx=1ʱ£¬S¡÷ABOµÄ×î´óֵΪ$\frac{\sqrt{2}}{2}$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢ÏÒ³¤¹«Ê½¡¢·ÖÀàÌÖÂÛ·½·¨¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | x=-$\frac{¦Ð}{6}$ | B£® | x=$\frac{¦Ð}{12}$ | C£® | x=-$\frac{¦Ð}{12}$ | D£® | x=$\frac{¦Ð}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $-\frac{{\sqrt{2}}}{10}$ | B£® | $-\frac{{7\sqrt{2}}}{10}$ | C£® | $-\frac{{3\sqrt{2}}}{4}$ | D£® | $-\frac{{4\sqrt{2}}}{5}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -$\frac{4}{3}$ | B£® | -$\frac{3}{4}$ | C£® | $\sqrt{3}$ | D£® | 2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com