5£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÉϵÄÒ»¶¯µãPµ½×ó¡¢ÓÒÁ½½¹µãF1£¬F2µÄ¾àÀëÖ®ºÍΪ2$\sqrt{2}$£¬µãPµ½ÍÖÔ²Ò»¸ö½¹µãµÄ×îÔ¶¾àÀëΪ$\sqrt{2}$+1£®
£¨¢ñ£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©¹ýÓÒ½¹µãF2µÄÖ±Ïßl½»ÍÖÔ²ÓÚA£¬BÁ½µã£®
¢ÙÈôyÖáÉÏ´æÔÚÒ»µãM£¨0£¬$\frac{1}{2}$£©Âú×ã|MA|=|MB|£¬ÇóÖ±ÏßlбÂÊkµÄÖµ£»
¢ÚÊÇ·ñ´æÔÚÕâÑùµÄÖ±Ïßl£¬Ê¹S¡÷ABOµÄ×î´óֵΪ$\frac{\sqrt{2}}{2}$£¨ÆäÖÐOÎª×ø±êÔ­µã£©£¿Èô´æÔÚ£¬ÇóÖ±Ïßl·½³Ì£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨I£©ÓÉÌâÒâ¿ÉµÃ£º2a=2$\sqrt{2}$£¬a+c=$\sqrt{2}$+1£¬¼°Æäa2=b2+c2£¬ÁªÁ¢½â³ö¼´¿ÉµÃ³ö£®
£¨II£©¢ÙÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=k£¨x-1£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£º£¨1+2k2£©x2-4k2x+2k2-2=0£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¡¢Öеã×ø±ê¹«Ê½¿ÉµÃÏß¶ÎABµÄÖеãG$£¨\frac{2{k}^{2}}{1+2{k}^{2}}£¬\frac{-k}{1+2{k}^{2}}£©$£®
¢Ùk=0ʱÂú×ãÌõ¼þ£®k¡Ù0ʱ£¬Âú×ã|MA|=|MB|£¬¡àkMG•k=-1£¬»¯Îª2k2-3k+1=0£¬½âµÃk£®
¢Úµ±x¡ÍxÖáʱ£¬Ö±ÏßlµÄ·½³ÌΪx=1£®´úÈëÍÖÔ²·½³Ì½âµÃy=$¡À\frac{\sqrt{2}}{2}$£¬¿ÉµÃS¡÷ABO=$\frac{\sqrt{2}}{2}$£¬´ËʱֱÏßlµÄ·½³ÌΪ£ºx=1£®µ±k=0ʱ£¬¡÷ABO²»´æÔÚ£¬ÉáÈ¥£®µ±k¡Ù0ʱ£¬¿ÉµÃS¡÷ABO=$\frac{1}{2}¡Á1¡Á|{y}_{1}-{y}_{2}|$=$\frac{1}{2}|k£¨{x}_{1}-1£©-k£¨{x}_{2}-1£©|$=$\frac{|k|}{2}|{x}_{1}-{x}_{2}|$=$\frac{1}{2}\sqrt{{k}^{2}}$$•\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$£¬»¯¼ò¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨I£©ÓÉÌâÒâ¿ÉµÃ£º2a=2$\sqrt{2}$£¬a+c=$\sqrt{2}$+1£¬¼°Æäa2=b2+c2£¬
½âµÃa=$\sqrt{2}$£¬c=1=b£¬
¡àÍÖÔ²µÄ·½³ÌΪ£º$\frac{{x}^{2}}{2}+{y}^{2}$=1£®
£¨II£©¢ÙÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=k£¨x-1£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬»¯Îª£º£¨1+2k2£©x2-4k2x+2k2-2=0£¬
¡àx1+x2=$\frac{4{k}^{2}}{1+2{k}^{2}}$£¬x1•x2=$\frac{2{k}^{2}-2}{1+2{k}^{2}}$£¬y1+y2=k£¨x1+x2-2£©=$\frac{-2k}{1+2{k}^{2}}$£®
¡àÏß¶ÎABµÄÖеãG$£¨\frac{2{k}^{2}}{1+2{k}^{2}}£¬\frac{-k}{1+2{k}^{2}}£©$£®
¢Ùk=0ʱÂú×ãÌõ¼þ£®
k¡Ù0ʱ£¬¡ßÂú×ã|MA|=|MB|£¬
¡àkMG•k=$\frac{\frac{-k}{1+2{k}^{2}}-\frac{1}{2}}{\frac{2{k}^{2}}{1+2{k}^{2}}-0}$•k=-1£¬»¯Îª2k2-3k+1=0£¬
½âµÃk=1»ò$\frac{1}{2}$£®
×ÛÉϿɵãºÂú×ãÌõ¼þµÄkµÄֵΪ0£¬1£¬$\frac{1}{2}$£®
¢Úµ±x¡ÍxÖáʱ£¬Ö±ÏßlµÄ·½³ÌΪx=1£®´úÈëÍÖÔ²·½³Ì½âµÃy=$¡À\frac{\sqrt{2}}{2}$£¬
¿ÉµÃS¡÷ABO=$\frac{\sqrt{2}}{2}$£¬´ËʱֱÏßlµÄ·½³ÌΪ£ºx=1£®
µ±k=0ʱ£¬¡÷ABO²»´æÔÚ£¬ÉáÈ¥£®
µ±k¡Ù0ʱ£¬¿ÉµÃS¡÷ABO=$\frac{1}{2}¡Á1¡Á|{y}_{1}-{y}_{2}|$=$\frac{1}{2}|k£¨{x}_{1}-1£©-k£¨{x}_{2}-1£©|$
=$\frac{|k|}{2}|{x}_{1}-{x}_{2}|$=$\frac{1}{2}\sqrt{{k}^{2}}$$•\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$
=$\frac{1}{2}\sqrt{{k}^{2}}$•$\sqrt{£¨\frac{4{k}^{2}}{1+2{k}^{2}}£©^{2}-4¡Á\frac{2{k}^{2}-2}{1+2{k}^{2}}}$=$\frac{\sqrt{2}}{\;}$$\sqrt{2}\sqrt{\frac{{k}^{2}£¨{k}^{2}+1£©}{£¨1+2{k}^{2}£©^{2}}}$=$\frac{\sqrt{2}}{2}$$\sqrt{\frac{{k}^{2}£¨{k}^{2}+1£©}{£¨{k}^{2}+\frac{1}{2}£©^{2}}}$£¼$\frac{\sqrt{2}}{2}$£®
¡àS¡÷ABO£¼$\frac{\sqrt{2}}{2}$£¬Òò´Ëk¡Ù0ʱ£¬²»´æÔÚ·ûºÏÌõ¼þµÄÖ±Ïßl£®
×ÛÉÏËùÊö£ºµ±ÇÒ½öµ±Ö±ÏßlµÄ·½³ÌΪx=1ʱ£¬S¡÷ABOµÄ×î´óֵΪ$\frac{\sqrt{2}}{2}$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢ÏÒ³¤¹«Ê½¡¢·ÖÀàÌÖÂÛ·½·¨¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®¡°µãMÔÚÇúÏß$\frac{x^2}{4}+\frac{y^2}{2}=1$ÉÏ¡±ÊÇ¡°µãMµÄ×ø±êÂú×ã·½³Ì$y=-\frac{{\sqrt{2}}}{2}\sqrt{4-{x^2}}$¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=-Acos£¨¦Øx+ϕ£©+$\sqrt{3}$Asin£¨¦Øx+ϕ£©£¨A£¾0£¬¦Ø£¾0£¬|ϕ|£¼$\frac{¦Ð}{2}$£©µÄ×î´óֵΪ2£¬ÖÜÆÚΪ¦Ð£¬½«º¯Êýy=f£¨x£©Í¼ÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î»µÃµ½º¯Êýy=g£¨x£©µÄͼÏó£¬Èôº¯Êýy=g£¨x£©ÊÇżº¯Êý£¬Ôòº¯Êýf£¨x£©µÄÒ»Ìõ¶Ô³ÆÖáΪ£¨¡¡¡¡£©
A£®x=-$\frac{¦Ð}{6}$B£®x=$\frac{¦Ð}{12}$C£®x=-$\frac{¦Ð}{12}$D£®x=$\frac{¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Æ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬½Ç¦ÁµÄʼ±ßÔÚxÖá·Ç¸º°ëÖᣬÖÕ±ßÓ뵥λԲ½»ÓÚµã$A£¨\frac{3}{5}£¬\frac{4}{5}£©$£¬½«ÆäÖÕ±ßÈÆOµãÄæÊ±ÕëÐýת$\frac{3¦Ð}{4}$ºóÓ뵥λԲ½»ÓÚµãB£¬ÔòBµÄºá×ø±êΪ£¨¡¡¡¡£©
A£®$-\frac{{\sqrt{2}}}{10}$B£®$-\frac{{7\sqrt{2}}}{10}$C£®$-\frac{{3\sqrt{2}}}{4}$D£®$-\frac{{4\sqrt{2}}}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Éèf£¨x£©ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬ÇÒ¶ÔÈÎÒâx¡ÊR£¬¶¼ÓÐf£¨x+2£©=-f£¨x£©£¬µ±0¡Üx¡Ü1ʱ£¬f£¨x£©=x2£®
£¨I£©µ±-2¡Üx¡Ü0ʱ£¬Çóf£¨x£©µÄ½âÎöʽ£»
£¨II£©ÉèÏòÁ¿$\overrightarrow a=£¨2sin¦È£¬1£©£¬\overrightarrow b=£¨9£¬16cos¦È£©$£¬Èô$\overrightarrow a£¬\overrightarrow b$ͬÏò£¬Çó$f£¨\frac{2017}{sin¦È+cos¦È}£©$µÄÖµ£»
£¨III£©¶¨Ò壺һ¸öº¯ÊýÔÚÄ³Çø¼äÉϵÄ×î´óÖµ¼õÈ¥×îСֵµÄ²î³ÆÎª´Ëº¯ÊýÔÚ´ËÇø¼äÉϵġ°½ç¸ß¡±£®
Çóf£¨x£©ÔÚÇø¼ä[t£¬t+1]£¨-2¡Üt¡Ü0£©Éϵġ°½ç¸ß¡±h£¨t£©µÄ½âÎöʽ£»ÔÚÉÏÊöÇø¼ä±ä»¯µÄ¹ý³ÌÖУ¬¡°½ç¸ß¡±h£¨t£©µÄij¸öÖµh0¹²³öÏÖÁËËĴΣ¬Çóh0µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬AA1¡¢BB1ΪԲÖùOO1µÄĸÏߣ¬BCÊǵ×ÃæÔ²OµÄÖ±¾¶£¬D¡¢E·Ö±ðÊÇAA1¡¢CB1µÄÖе㣬BA=2£¬AC=1£¬B1C=3
£¨1£©Ö¤Ã÷£ºDE¡ÎÆ½ÃæABC£»
£¨2£©ÇóÔ²ÖùOO1µÄÌå»ýºÍ±íÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Ô²x2+y2-2x-8y+13=0ÓëÖ±Ïßax+y-1=0µÄÏཻËùµÃÏÒ³¤Îª2$\sqrt{3}$£¬Ôòa=£¨¡¡¡¡£©
A£®-$\frac{4}{3}$B£®-$\frac{3}{4}$C£®$\sqrt{3}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÔ²C£ºx2+y2-6x-4y+4=0£¬Ö±Ïßl1±»Ô²Ëù½ØµÃµÄÏÒµÄÖеãΪP£¨5£¬3£©£®
£¨1£©ÇóÖ±Ïßl1µÄ·½³Ì£»
£¨2£©ÈôÖ±Ïßl2£ºx+y+b=0ÓëÔ²CÏཻ£¬ÇóbµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDΪÁâÐΣ¬¡ÏDAB=60¡ã£¬PD¡ÍÆ½ÃæABCD£¬PD=AD=4£¬µãE¡¢F·Ö±ðΪABºÍPDµÄÖе㣮
£¨1£©ÇóÖ¤£ºÖ±ÏßAF¡ÎÆ½ÃæPEC£»
£¨2£©ÇóÆ½ÃæPADÓëÆ½ÃæPECËù³ÉÈñ¶þÃæ½ÇµÄÕýÇÐÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸