分析 (1)设直线l1的斜率为则k,由题意可得圆心C(3,2),又弦的中点为P(5,3),可求得kPC=$\frac{1}{2}$,由k•kPC=-1可求k,从而可求直线l1的方程;
(2)若直线l2:x+y+b=0与圆C相交,圆心到直线l2的距离小于半径,从而可求得b的取值范围.
解答 解:(1)∵圆C的方程化标准方程为:(x-3)2+(y-2)2=9,
∴圆心C(3,2),半径r=3.设直线l1的斜率为则k,则k=-$\frac{1}{\frac{1}{2}}$=-2.
∴直线l1的方程为:y-3=-2(x-5)即2x+y-13=0.
(2)∵圆的半径r=3,
∴要使直线l2与圆C相交则须有:$\frac{|3+2+b|}{\sqrt{2}}$<3,
∴|b+5|<3$\sqrt{2}$于是b的取值范围是:-3$\sqrt{2}$-5<b<3$\sqrt{2}$-5.
点评 本题考查直线和圆的方程的应用,着重考查通过圆心到直线间的距离与圆的半径的大小判断二者的位置关系,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}x±y=0$ | B. | x±y=0 | C. | 2x±y=0 | D. | $\sqrt{3}x±y=0$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com