精英家教网 > 高中数学 > 题目详情
如图,是某四棱锥的三视图,则该几何体的表面积为
 

精英家教网
分析:几何体是一个四棱锥,四棱锥的底面是一个长为6,宽为2的矩形,顶点底面的面积,四棱锥的一个侧面与底面垂直,四棱锥的高是4,根据勾股定理做出三角形的高,做出4个三角形的面积,求和得到结果.
解答:解:由三视图知,几何体是一个四棱锥,
∵四棱锥的底面是一个长为6,宽为2的矩形,
∴面积是6×2=12,
∵四棱锥的一个侧面与底面垂直,
顶点在底面上的射影是垂直于底面的这条棱与底面的交线的中点,
四棱锥的高是4,
和垂直于底面的侧面相对的面的高是
22+42
=2
5

∴四个侧面的面积是
1
2
×6×2
5
+
1
2
×6×4+2×
1
2
×2×5
=34+6
5

故答案为:34+6
5
点评:本题考查由三视图求几何体的表面积,考查由三视图还原几何体,并且顶点几何体各个部分的长度,本题考查利用勾股定理求三角形的高,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•江苏一模)某部门要设计一种如图所示的灯架,用来安装球心为O,半径为R(米)的球形灯泡.该灯架由灯托、灯杆、灯脚三个部件组成,其中圆弧形灯托
EA
EB
EC
ED
所在圆的圆心都是O、半径都是R(米)、圆弧的圆心角都是θ(弧度);灯杆EF垂直于地面,杆顶E到地面的距离为h(米),且h>R;灯脚FA1,FB1,FC1,FD1是正四棱锥F-A1B1C1D1的四条侧棱,正方形A1B1C1D1的外接圆半径为R(米),四条灯脚与灯杆所在直线的夹角都为θ(弧度).已知灯杆、灯脚的造价都是每米a(元),灯托造价是每米
a
3
(元),其中R,h,a都为常数.设该灯架的总造价为y(元).
(1)求y关于θ的函数关系式;
(2)当θ取何值时,y取得最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.
(1)若该四棱锥的左视图为直角三角形,则它的体积为
 

(2)关于该四棱锥的下列结论中:
①四棱锥中至少有两组侧面互相垂直;
②四棱锥的侧面中可能存在三个直角三角形;
③四棱锥中不可能存在四组互相垂直的侧面.
所有正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

某几何体的三视图如图所示,那么这个几何体是


  1. A.
    三棱锥
  2. B.
    四棱锥
  3. C.
    三棱台
  4. D.
    四棱台

查看答案和解析>>

科目:高中数学 来源:2013-2014学年北京市海淀区高三上学期期末考试理科数学试卷(解析版) 题型:填空题

已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.

(1)若该四棱锥的左视图为直角三角形,则它的体积为__________;

(2)关于该四棱锥的下列结论中:

①四棱锥中至少有两组侧面互相垂直;

②四棱锥的侧面中可能存在三个直角三角形;

③四棱锥中不可能存在四组互相垂直的侧面.

所有正确结论的序号是___________.

 

查看答案和解析>>

科目:高中数学 来源:2013年江苏省苏锡常镇、徐州、连云港六市高考数学一模试卷(解析版) 题型:解答题

某部门要设计一种如图所示的灯架,用来安装球心为O,半径为R(米)的球形灯泡.该灯架由灯托、灯杆、灯脚三个部件组成,其中圆弧形灯托所在圆的圆心都是O、半径都是R(米)、圆弧的圆心角都是θ(弧度);灯杆EF垂直于地面,杆顶E到地面的距离为h(米),且h>R;灯脚FA1,FB1,FC1,FD1是正四棱锥F-A1B1C1D1的四条侧棱,正方形A1B1C1D1的外接圆半径为R(米),四条灯脚与灯杆所在直线的夹角都为θ(弧度).已知灯杆、灯脚的造价都是每米a(元),灯托造价是每米(元),其中R,h,a都为常数.设该灯架的总造价为y(元).
(1)求y关于θ的函数关系式;
(2)当θ取何值时,y取得最小值?

查看答案和解析>>

同步练习册答案