精英家教网 > 高中数学 > 题目详情

如图,在梯形ABCD中,AD∥BC,AC⊥BD,垂足为E,∠ABC=45°,过E作AD的垂线交AD于F,交BC于G,过E作AD的平行线交AB于H.求证:FG2=AF·DF+BG·CG+AH·BH.

 

 

见解析

【解析】因为AC⊥BD,故△AED、△BEC都是直角三角形.

又EF⊥AD,EG⊥BC,

由射影定理可知AF·DF=EF2,

BG·CG=EG2.

又FG2=(FE+EG)2=FE2+EG2+2FE·EG=AF·DF+BG·CG+2FE·EG,∠ABC=45°,如图,过点H、A分别作直线HM、AN与BC垂直,易知,AH=FE,BH=EG,故AH·BH=2EF·EG.所以

FG2=AF·DF+BG·CG+2FE·EG=AF·DF+BG·CG+AH·BH.

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨选修4-4第1课时练习卷(解析版) 题型:解答题

求极坐标方程分别为ρ=cosθ与ρ=sinθ的两个圆的圆心距.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨选修4-1第2课时练习卷(解析版) 题型:解答题

如图,在△ABC中,∠C=90°,BE是角平分线,DE⊥BE交AB于D,圆O是△BDE的外接圆.

(1)求证:AC是圆O的切线;

(2)如果AD=6,AE=6,求BC的长.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨选修4-1第2课时练习卷(解析版) 题型:解答题

如图,点B在圆O上,M为直径AC上一点,BM的延长线交圆O于N,∠BNA=45°,若圆O的半径为2,OA=OM,求MN的长.

 

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨选修4-1第1课时练习卷(解析版) 题型:解答题

在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,求.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨选修4-1第1课时练习卷(解析版) 题型:解答题

如图,在梯形ABCD中,AD∥BC,∠ADC=90°,E是AB边的中点,求证:ED=EC.

 

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第十章第6课时练习卷(解析版) 题型:解答题

“抛阶砖”是国外游乐场的典型游戏之一.参与者只须将手上的“金币”(设“金币”的半径为1)抛向离身边若干距离的阶砖平面上,抛出的“金币”若恰好落在任何一个阶砖(边长为2.1的正方形)的范围内(不与阶砖相连的线重叠),便可获大奖.不少人被高额奖金所吸引,纷纷参与此游戏但很少有人得到奖品,请用所学的概率知识解释这是为什么.

 

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第十章第6课时练习卷(解析版) 题型:填空题

下列概率模型:

①从区间[-5,5]内任取一个数,求取到1的概率;

②从区间[-5,5]内任取一个数,求取到绝对值不大于1的数的概率;

③从区间[-5,5]内任取一个整数,求取到大于1的数的概率;

④向一个边长为5cm的正方形ABCD内投一点P,求点P离中心不超过1cm的概率.

其中,是几何概型的有__________.(填序号)

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第十章第3课时练习卷(解析版) 题型:填空题

已知某同学五次数学成绩分别是:121,127,123,a,125,若其平均成绩是124,则这组数据的方差是________.

 

查看答案和解析>>

同步练习册答案