精英家教网 > 高中数学 > 题目详情
2.已知数列{an}的前n项和Sn=n2-2n-1,则a1+a17=(  )
A.31B.29C.30D.398

分析 由数列{an}的前n项和Sn=n2-2n-1,a1+a17=S1+(S17-S16),能求出结果.

解答 解:∵数列{an}的前n项和Sn=n2-2n-1,
∴a1+a17=S1+(S17-S16
=1-2-1+(289-34-1)-(256-32-1)
=29.
故选:B.

点评 本题考查数列中两项和的求法,解题时要注意公式an=$\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$的合理运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知点P是边长为2的等边三角形内一点,它到三边的距离分别为x、y、z,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列命题中:
①命题P:?x∈R使得2x2-1<0”,则¬P是假命题;
②“若x+y=0,则x,y互为相反数”的逆命题为假命题;
③?x∈R,若x>210,则x>2100”;
④命题“若p,则q”的逆否命题是“若¬q则¬p”,
其中真命题的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x,y都是正数,且$\frac{2}{x}+\frac{1}{y}$=1,则x+y的最小值等于(  )
A.6B.$4\sqrt{2}$C.$3+2\sqrt{2}$D.$4+2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.己知f(x)=loga(ax-1)(a>1).求:
(1)函数f(x)的定义城;
(2)求使f(2x)=f-1(x)的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.抛物线y2=2x的焦点到准线的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C:x2+y2=4,直线l:x-y+1=0与圆C交于A,B两点,点O为坐标原点,求△AOB的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,且${S_n}={n^2}-8n$
(1)求数列{an}的通项公式;
(2)求Sn的最小值及其相应的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.圆(x-$\frac{3}{2}$)2+y2=$\frac{25}{4}$经过椭圆C的三个顶点,则椭圆C的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$或$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$或$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案