精英家教网 > 高中数学 > 题目详情
10.已知x,y都是正数,且$\frac{2}{x}+\frac{1}{y}$=1,则x+y的最小值等于(  )
A.6B.$4\sqrt{2}$C.$3+2\sqrt{2}$D.$4+2\sqrt{2}$

分析 利用“1”的代换,根据基本不等式求出它的最小值.

解答 解:∵x,y都是正数,且$\frac{2}{x}+\frac{1}{y}$=1,
∴x+y=(x+y)($\frac{2}{x}+\frac{1}{y}$)=3+$\frac{x}{y}$+$\frac{2y}{x}$≥3+2$\sqrt{2}$,
当且仅当$\frac{x}{y}$=$\frac{2y}{x}$时,x+y的最小值等于3+2$\sqrt{2}$.
故选C.

点评 本题主要考查基本不等式的应用,注意检验等号成立的条件,式子的变形是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.集合A={y|y=x-2},B={y|y=$\sqrt{x}$},则x∈A是x∈B的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.不充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知α,β为锐角△ABC的两个内角,x∈R,f(x)=($\frac{cosα}{sinβ}$)|x-2|+($\frac{cosβ}{sinα}$)|x-2|,则关于x的不等式f(2x-1)-f(x+1)>0的解集为(  )
A.(-∞,$\frac{4}{3}$)∪(2,+∞)B.($\frac{4}{3}$,2)C.(-∞,-$\frac{4}{3}$)∪(2,+∞)D.(-$\frac{4}{3}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在等差数列{an}中,a5=6,Sn表示{an}的前n项的和,则S9=54.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ln(2+x)-ln(2-x)的定义域为A,g(x)=x2+2x+m的值域为B,若A⊆B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在四边形 ABCD 中,若$\overrightarrow{AB}$=-$\frac{1}{2}$$\overrightarrow{CD}$,则此四边形是(  )
A.平行四边形B.菱形C.梯形D.矩形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}的前n项和Sn=n2-2n-1,则a1+a17=(  )
A.31B.29C.30D.398

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.复数2i的平方根±(1+i).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.焦点为F(0,-1)的抛物线的标准方程是x2=-4y.

查看答案和解析>>

同步练习册答案