精英家教网 > 高中数学 > 题目详情
1.已知α,β为锐角△ABC的两个内角,x∈R,f(x)=($\frac{cosα}{sinβ}$)|x-2|+($\frac{cosβ}{sinα}$)|x-2|,则关于x的不等式f(2x-1)-f(x+1)>0的解集为(  )
A.(-∞,$\frac{4}{3}$)∪(2,+∞)B.($\frac{4}{3}$,2)C.(-∞,-$\frac{4}{3}$)∪(2,+∞)D.(-$\frac{4}{3}$,2)

分析 由已知α,β为锐角△ABC的两个内角,得到cosβ=sin(90°-β)<sinα,同理cosα<sinβ,从而得到函数在(2,+∞)上单调递减,在(-∞,2)单调递增,利用此单调性将f(2x-1)-f(x+1)>0转化为不等式∴|2x-1-2|<|x+1-2|解之即可.

解答 解:∵α,β为锐角△ABC的两个内角,可得α+β>90°,cosβ=sin(90°-β)<sinα,同理cosα<sinβ,
∴f(x)=($\frac{cosα}{sinβ}$)|x-2|+($\frac{cosβ}{sinα}$)|x-2|,在(2,+∞)上单调递减,在(-∞,2)单调递增,
由关于x的不等式f(2x-1)-f(x+1)>0得到关于x的不等式f(2x-1)>f(x+1),
∴|2x-1-2|<|x+1-2|即|2x-3|<|x-1|,化简为3x2-1x+8<0,解得x∈($\frac{4}{3}$,2);
故选:B.

点评 本题主要考查了函数的单调性以及对称性的运用;关键是由已知得到函数的单调性,利用单调性得到自变量的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\{log_{\frac{1}{2}}}x,x>0\end{array}\right.$,则f[f(4)]=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知点P是边长为2的等边三角形内一点,它到三边的距离分别为x、y、z,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)求曲线y=x3-x在点A(1,0)处的切线方程;
(2)求经过点B($\frac{π}{3}$,$\frac{1}{2}$)且与曲线y=cosx相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)和g(x)分别是R上的奇函数和偶函数,则函数v(x)=f(x)|g(x)|的图象(  )
A.关于原点对称B.关于x轴对称C.关于y轴对称D.关于直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)=x5-2x4+x3+x2-x-5,应用秦九韶算法计算x=5的值是2015.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列命题中:
①命题P:?x∈R使得2x2-1<0”,则¬P是假命题;
②“若x+y=0,则x,y互为相反数”的逆命题为假命题;
③?x∈R,若x>210,则x>2100”;
④命题“若p,则q”的逆否命题是“若¬q则¬p”,
其中真命题的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x,y都是正数,且$\frac{2}{x}+\frac{1}{y}$=1,则x+y的最小值等于(  )
A.6B.$4\sqrt{2}$C.$3+2\sqrt{2}$D.$4+2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,且${S_n}={n^2}-8n$
(1)求数列{an}的通项公式;
(2)求Sn的最小值及其相应的n的值.

查看答案和解析>>

同步练习册答案