精英家教网 > 高中数学 > 题目详情
6.已知f(x)=x5-2x4+x3+x2-x-5,应用秦九韶算法计算x=5的值是2015.

分析 利用秦九韶算法计算多项式的值,先将多项式转化为f(x)=x5-2x4+x3+x2-x-5=((((x-2)x+1)x+1)x-2)x-5的形式,然后求解即可.

解答 解:f(x)=x5-2x4+x3+x2-x-5=((((x-2)x+1)x+1)x-2)x-5
则f(5)=((((5-2)5+1)5+1)5-2)5-5
=2015.
故答案为:2015.

点评 本题考查算法的多样性,正确理解秦九韶算法求多项式的原理是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)的定义域为(0,4),函数g(x)=f(x+1)的定义域为集合A,集合B={x|a<x<2a-1},若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(文)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,EF=CE,AB=$\sqrt{2}$EF.
(Ⅰ)求证:AF∥平面BDE;
(Ⅱ)求证:CF⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=log(x-2)(5-x)的定义域是(  )
A.(3,4)B.(2,5)C.(2,3)∪(3,5)D.(-∞,2)∪(5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知α,β为锐角△ABC的两个内角,x∈R,f(x)=($\frac{cosα}{sinβ}$)|x-2|+($\frac{cosβ}{sinα}$)|x-2|,则关于x的不等式f(2x-1)-f(x+1)>0的解集为(  )
A.(-∞,$\frac{4}{3}$)∪(2,+∞)B.($\frac{4}{3}$,2)C.(-∞,-$\frac{4}{3}$)∪(2,+∞)D.(-$\frac{4}{3}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列结论中,正确的是(  )
A.“x>2”是“x2-2x>0”成立的必要条件
B.命题“若x2=1,则x=1”的逆否命题为假命题
C.命题“p:?x∈R,x2≥0”的否定形式为“¬p:?x0∈R,x02≥0”
D..已知向量$\overrightarrow a,\overrightarrow b$,则“$\overrightarrow a∥\overrightarrow b$”是“$\overrightarrow a+\overrightarrow b=\overrightarrow 0$”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在等差数列{an}中,a5=6,Sn表示{an}的前n项的和,则S9=54.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在四边形 ABCD 中,若$\overrightarrow{AB}$=-$\frac{1}{2}$$\overrightarrow{CD}$,则此四边形是(  )
A.平行四边形B.菱形C.梯形D.矩形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为2,右焦点F到它的一条渐近线的距离为$\sqrt{3}$.
(1)求双曲线的标准方程;
(2)是否存在过点F且与双曲线的右支交于不同的P、Q两点的直线l,当点M满足$\overrightarrow{OM}=\frac{1}{2}(\overrightarrow{OP}+\overrightarrow{OQ})$时,使得点M在直线x=-2上的射影点N满足$\overrightarrow{PN}•\overrightarrow{QN}=0$?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案