分析 (1)由点到直线的距离公式可知:$\frac{丨bc丨}{\sqrt{{a}^{2}+{b}^{2}}}$=$\sqrt{3}$,即可求得b=$\sqrt{3}$,离心率e=$\frac{c}{a}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=$\sqrt{1+\frac{3}{{a}^{2}}}$=2,即可求得a的值,求得双曲线的标准方程;
(2)假设存在满足条件的直线l,直线l的斜率不存在时,求得N,P,Q坐标,由$\overrightarrow{PN}•\overrightarrow{QN}=7≠0$,即此时l不满足条件;当斜率存在时,设l的方程为y=k(x-2),代入双曲线方程,由韦达定理及向量的数量积的坐标表示,$(-2-{x_1})(-2-{x_2})+\frac{{{y_2}-{y_1}}}{2}•\frac{{{y_1}-{y_2}}}{2}=0$即$4{x_1}{x_2}+8({x_1}+{x_2})+16-[{({y_1}+{y_2})^2}-4{y_1}{y_2}]=0$,代入即可求得k的值,求得直线方程.
解答 解:(1)双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$焦点在x轴上,设右焦点为( c,0 ),一条渐近线为bx-ay=0,
由点到直线的距离公式可知:$\frac{丨bc丨}{\sqrt{{a}^{2}+{b}^{2}}}$=$\sqrt{3}$,由c2=a2+b2,解得:b=$\sqrt{3}$,
由双曲线的离心率e=$\frac{c}{a}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=$\sqrt{1+\frac{3}{{a}^{2}}}$=2,解得:a=1,
∴双曲线的标准方程${x^2}-\frac{y^2}{3}=1$;
(2)∵$\overrightarrow{OM}=\frac{1}{2}(\overrightarrow{OP}+\overrightarrow{OQ})$,
∴M是PQ的中点,假设存在满足条件的直线l,
若直线l的斜率不存在时,此时M点即为F(2,0),可解得:N(-2,0),P(2,3),Q(2,-3),
∴$\overrightarrow{PN}=(-4,-3),\overrightarrow{QN}=(-4,3)$,
∴$\overrightarrow{PN}•\overrightarrow{QN}=7≠0$,即此时l不满足条件;
若直线l的斜率存在时,设斜率为k,则l的方程为y=k(x-2).
∴$\left\{\begin{array}{l}y=k(x-2)\\ 3{x^2}-{y^2}=3\end{array}\right.$,整理得(3-k2)x2+4k2x-4k2-3=0,
∵要使l与双曲线交于右支不同的P、Q两点,须要3-k2≠0,x1+x2>0,x1x2>0,即$\frac{{4{k^2}}}{{{k^2}-3}}>0$,$\frac{{4{k^2}+3}}{{{k^2}-3}}>0$,可得k2>3
由韦达定理可知:${x_1}+{x_2}=\frac{{4{k^2}}}{{{k^2}-3}},{x_1}{x_2}=\frac{{4{k^2}+3}}{{{k^2}-3}},{y_1}+{y_2}=k({x_1}+{x_2})-4k=\frac{12k}{{{k^2}-3}}$,${y_1}{y_2}={k^2}[{x_1}{x_2}-2({x_1}+{x_2})+4]=\frac{{-9{k^2}}}{{{k^2}-3}}$,
∵M在直线x=-2上的射影点N满足$\overrightarrow{PN}•\overrightarrow{QN}=0$,
∴$\overrightarrow{PN}=(-2-{x_1},\frac{{{y_2}-{y_1}}}{2}),\overrightarrow{QN}=(-2-{x_2},\frac{{{y_1}-{y_2}}}{2})$,
∵$\overrightarrow{PN}•\overrightarrow{QN}=0$,
∴$(-2-{x_1})(-2-{x_2})+\frac{{{y_2}-{y_1}}}{2}•\frac{{{y_1}-{y_2}}}{2}=0$即$4{x_1}{x_2}+8({x_1}+{x_2})+16-[{({y_1}+{y_2})^2}-4{y_1}{y_2}]=0$,
整理得:7k4-66k2+27=0,解得:k2=9或${k^2}=\frac{3}{7}$,
∵k2>3,k2=9,即k=±3,
∴存在这样的直线l满足条件,l的方程为3x-y-6=0或3x+y-6=0.
点评 本题考查双曲线的标准方程,直线与双曲线的位置关系,考查韦达定理,向量的坐标运算,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x<0,sinx≤0或tanx≤0 | B. | ?x<0,sinx≤0且tanx≤0 | ||
| C. | ?x≥0,sinx≤0或tanx≤0 | D. | ?x≥0,sinx≤0且tanx≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com