精英家教网 > 高中数学 > 题目详情
16.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为2,右焦点F到它的一条渐近线的距离为$\sqrt{3}$.
(1)求双曲线的标准方程;
(2)是否存在过点F且与双曲线的右支交于不同的P、Q两点的直线l,当点M满足$\overrightarrow{OM}=\frac{1}{2}(\overrightarrow{OP}+\overrightarrow{OQ})$时,使得点M在直线x=-2上的射影点N满足$\overrightarrow{PN}•\overrightarrow{QN}=0$?若存在,求出直线l的方程;若不存在,说明理由.

分析 (1)由点到直线的距离公式可知:$\frac{丨bc丨}{\sqrt{{a}^{2}+{b}^{2}}}$=$\sqrt{3}$,即可求得b=$\sqrt{3}$,离心率e=$\frac{c}{a}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=$\sqrt{1+\frac{3}{{a}^{2}}}$=2,即可求得a的值,求得双曲线的标准方程;
(2)假设存在满足条件的直线l,直线l的斜率不存在时,求得N,P,Q坐标,由$\overrightarrow{PN}•\overrightarrow{QN}=7≠0$,即此时l不满足条件;当斜率存在时,设l的方程为y=k(x-2),代入双曲线方程,由韦达定理及向量的数量积的坐标表示,$(-2-{x_1})(-2-{x_2})+\frac{{{y_2}-{y_1}}}{2}•\frac{{{y_1}-{y_2}}}{2}=0$即$4{x_1}{x_2}+8({x_1}+{x_2})+16-[{({y_1}+{y_2})^2}-4{y_1}{y_2}]=0$,代入即可求得k的值,求得直线方程.

解答 解:(1)双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$焦点在x轴上,设右焦点为( c,0 ),一条渐近线为bx-ay=0,
由点到直线的距离公式可知:$\frac{丨bc丨}{\sqrt{{a}^{2}+{b}^{2}}}$=$\sqrt{3}$,由c2=a2+b2,解得:b=$\sqrt{3}$,
由双曲线的离心率e=$\frac{c}{a}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=$\sqrt{1+\frac{3}{{a}^{2}}}$=2,解得:a=1,
∴双曲线的标准方程${x^2}-\frac{y^2}{3}=1$;
(2)∵$\overrightarrow{OM}=\frac{1}{2}(\overrightarrow{OP}+\overrightarrow{OQ})$,
∴M是PQ的中点,假设存在满足条件的直线l,
若直线l的斜率不存在时,此时M点即为F(2,0),可解得:N(-2,0),P(2,3),Q(2,-3),
∴$\overrightarrow{PN}=(-4,-3),\overrightarrow{QN}=(-4,3)$,
∴$\overrightarrow{PN}•\overrightarrow{QN}=7≠0$,即此时l不满足条件;
若直线l的斜率存在时,设斜率为k,则l的方程为y=k(x-2).
∴$\left\{\begin{array}{l}y=k(x-2)\\ 3{x^2}-{y^2}=3\end{array}\right.$,整理得(3-k2)x2+4k2x-4k2-3=0,
∵要使l与双曲线交于右支不同的P、Q两点,须要3-k2≠0,x1+x2>0,x1x2>0,即$\frac{{4{k^2}}}{{{k^2}-3}}>0$,$\frac{{4{k^2}+3}}{{{k^2}-3}}>0$,可得k2>3
由韦达定理可知:${x_1}+{x_2}=\frac{{4{k^2}}}{{{k^2}-3}},{x_1}{x_2}=\frac{{4{k^2}+3}}{{{k^2}-3}},{y_1}+{y_2}=k({x_1}+{x_2})-4k=\frac{12k}{{{k^2}-3}}$,${y_1}{y_2}={k^2}[{x_1}{x_2}-2({x_1}+{x_2})+4]=\frac{{-9{k^2}}}{{{k^2}-3}}$,
∵M在直线x=-2上的射影点N满足$\overrightarrow{PN}•\overrightarrow{QN}=0$,
∴$\overrightarrow{PN}=(-2-{x_1},\frac{{{y_2}-{y_1}}}{2}),\overrightarrow{QN}=(-2-{x_2},\frac{{{y_1}-{y_2}}}{2})$,
∵$\overrightarrow{PN}•\overrightarrow{QN}=0$,
∴$(-2-{x_1})(-2-{x_2})+\frac{{{y_2}-{y_1}}}{2}•\frac{{{y_1}-{y_2}}}{2}=0$即$4{x_1}{x_2}+8({x_1}+{x_2})+16-[{({y_1}+{y_2})^2}-4{y_1}{y_2}]=0$,
整理得:7k4-66k2+27=0,解得:k2=9或${k^2}=\frac{3}{7}$,
∵k2>3,k2=9,即k=±3,
∴存在这样的直线l满足条件,l的方程为3x-y-6=0或3x+y-6=0.

点评 本题考查双曲线的标准方程,直线与双曲线的位置关系,考查韦达定理,向量的坐标运算,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知f(x)=x5-2x4+x3+x2-x-5,应用秦九韶算法计算x=5的值是2015.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.抛物线y2=2x的焦点到准线的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B和C、D,记得到平行四边形ABCD的面积为S.
(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=|x1y2-x2y1|.
(2)设l1与l2的斜率之积为$-\frac{1}{2}$,求面积S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,且${S_n}={n^2}-8n$
(1)求数列{an}的通项公式;
(2)求Sn的最小值及其相应的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{p}{2}{x^2}-lnx({p∈R})$.
(1)当p=2时,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)当p>1时,求证:$({p-1})x-f(x)<\frac{{3{e^{p-3}}}}{2p-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知命题p:?x0<0,sinx0>0且tanx0>0,则命题p的否定为(  )
A.?x<0,sinx≤0或tanx≤0B.?x<0,sinx≤0且tanx≤0
C.?x≥0,sinx≤0或tanx≤0D.?x≥0,sinx≤0且tanx≤0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若直线y=kx+1(k>0)与双曲线x2-$\frac{{y}^{2}}{2}$=1有且只有一个交点,则k的值是$\sqrt{2}$或$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知O为坐标原点,向量$\overrightarrow{OA}$=(sinx,1),$\overrightarrow{OB}$=(cosx,0),$\overrightarrow{OC}$=(-sinx,2),点P满足$\overrightarrow{AB}$=$\overrightarrow{BP}$.
(1)记函数f(x)=$\overrightarrow{PB}$•$\overrightarrow{CA}$,当x∈(-$\frac{π}{8}$,$\frac{π}{2}$)时,讨论函数f(x)的单调性;
(2)设$\overrightarrow{OD}$=(4λ,cos2x),g(x)=$\overrightarrow{OA}$•$\overrightarrow{OD}$,x∈[0,$\frac{π}{2}$],若g(x)的最大值是$\frac{3}{2}$,求实数λ的值.

查看答案和解析>>

同步练习册答案