精英家教网 > 高中数学 > 题目详情
11.已知数列{an}的前n项和为Sn,且${S_n}={n^2}-8n$
(1)求数列{an}的通项公式;
(2)求Sn的最小值及其相应的n的值.

分析 (1)当n≥2时,易求an=Sn-Sn-1=2n-9,当n=1时,a1=-7=S1,满足题设,从而可得数列{an}的通项公式;
(2)由(1)可得数列{an}的通项公式an=2n-9,可得:数列{an}的前4项均为负值,从第5项开始全为正数,即可求得答案.

解答 解:(1)当n≥2时,an=Sn-Sn-1=(n2-8n)-[(n-1)2-8(n-1)]=2n-9,
当n=1时,a1=-7=S1,满足题设,
∴an=2n-9;
(2)由(1)可知数列{an}的通项公式an=2n-9,
令an=2n-9≥0,解得n≥4.5,
故数列{an}的前4项均为负值,从第5项开始全为正数,
故当n=4时,Sn取得最小值,
故S4=a1+a2+a3+a4=-7-5-3-1=-16.

点评 本题考查等差数列的通项公式,及求和公式,利用等差数列的通项公式分析Sn的最值是解决问题的捷径,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知α,β为锐角△ABC的两个内角,x∈R,f(x)=($\frac{cosα}{sinβ}$)|x-2|+($\frac{cosβ}{sinα}$)|x-2|,则关于x的不等式f(2x-1)-f(x+1)>0的解集为(  )
A.(-∞,$\frac{4}{3}$)∪(2,+∞)B.($\frac{4}{3}$,2)C.(-∞,-$\frac{4}{3}$)∪(2,+∞)D.(-$\frac{4}{3}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}的前n项和Sn=n2-2n-1,则a1+a17=(  )
A.31B.29C.30D.398

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.复数2i的平方根±(1+i).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合A={x||x-4|≤2},$B=\left\{{x\left|{\frac{5-x}{x+1}>0}\right.}\right\}$,全集U=R.
(1)求A∩(∁UB);
(2)若集合C={x|x<a},A∩C≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为2,右焦点F到它的一条渐近线的距离为$\sqrt{3}$.
(1)求双曲线的标准方程;
(2)是否存在过点F且与双曲线的右支交于不同的P、Q两点的直线l,当点M满足$\overrightarrow{OM}=\frac{1}{2}(\overrightarrow{OP}+\overrightarrow{OQ})$时,使得点M在直线x=-2上的射影点N满足$\overrightarrow{PN}•\overrightarrow{QN}=0$?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线$\frac{x^2}{9}-\frac{y^2}{27}=1$与点M(5,3),F为右焦点,若双曲线上有一点P,则$PM+\frac{1}{2}PF$的最小值为$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.焦点为F(0,-1)的抛物线的标准方程是x2=-4y.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)过点(1,$\frac{3}{2}$),左、右焦点为F1、F2,右顶点为A,上顶点为B,且|AB|=$\frac{\sqrt{7}}{2}$|F1F2|.
(1)求椭圆E的方程;
(2)过点M(-4,0)作斜率为k(k≠0)的直线l,交椭圆E于P、Q两点,N为PQ中点,问是否存在实数k,使得以F1F2为直径的圆经过N点,说明理由.

查看答案和解析>>

同步练习册答案