精英家教网 > 高中数学 > 题目详情
14.函数y=log(x-2)(5-x)的定义域是(  )
A.(3,4)B.(2,5)C.(2,3)∪(3,5)D.(-∞,2)∪(5,+∞)

分析 直接由对数的运算性质列出不等式组,求解即可得答案.

解答 解:由$\left\{\begin{array}{l}{5-x>0}\\{x-2>0}\\{x-2≠1}\end{array}\right.$,
解得2<x<5且x≠3.
∴函数y=log(x-2)(5-x)的定义域是:(2,3)∪(3,5).
故选:C.

点评 本题考查了函数的定义域及其求法,考查了不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了(  )
A.60里B.48里C.36里D.24里

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=Asin(ωx+φ)(ω>0,|φ|<π)的图象一段如图,则f(2016)等于(  )
A.-1B.-$\frac{1}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知等比数列{an}的公比q=2,其前4项和S4=60,则a3等于(  )
A.16B.8C.-16D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)求曲线y=x3-x在点A(1,0)处的切线方程;
(2)求经过点B($\frac{π}{3}$,$\frac{1}{2}$)且与曲线y=cosx相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知全集U=R,集合A={x|1≤x≤3},B={x|2<x<4}.
(1)求图中阴影部分表示的集合C;
(2)若非空集合D={x|4-a<x<a},且D⊆(A∪B),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)=x5-2x4+x3+x2-x-5,应用秦九韶算法计算x=5的值是2015.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设A,B分别是直线y=$\frac{{2\sqrt{5}}}{5}$x和y=-$\frac{{2\sqrt{5}}}{5}$x上的动点,且|AB|=2$\sqrt{5}$,设O为坐标原点,动点P满足$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)斜率为1不经过原点O,且与动点P的轨迹相交于C,D两点,M为线段CD的中点,直线CD与直线OM能否垂直?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B和C、D,记得到平行四边形ABCD的面积为S.
(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=|x1y2-x2y1|.
(2)设l1与l2的斜率之积为$-\frac{1}{2}$,求面积S的值.

查看答案和解析>>

同步练习册答案