精英家教网 > 高中数学 > 题目详情
20.设A(x1,y1),B(x2,y2)是函数$f(x)=2sin(2x+\frac{π}{3})+1$图象上的任意两点,点M满足$\overrightarrow{OM}=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})$,其中O是坐标原点,若点M的横坐标是-$\frac{π}{6}$,则点M的纵坐标是(  )
A.-1B.0C.1D.3

分析 由题设条件知M是AB的中点,由中点坐标公式可以求出M点的纵坐标.

解答 解:∵$\overrightarrow{OM}=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})$,
∴M是AB的中点,设M点的坐标为M(x,y),
由点M的横坐标是-$\frac{π}{6}$,得x1+x2=-$\frac{π}{3}$,则x2=-$\frac{π}{3}$-x1
∴y1+y2=2sin(2x1+$\frac{π}{3}$)+1+2sin(2x2+$\frac{π}{3}$)+1=2sin(2x1+$\frac{π}{3}$)+1+2sin(-2x1=$\frac{π}{3}$)+1=2
∴M点的纵坐标为1.
故选:C.

点评 本题考查了中点坐标公式、三角函数性质等知识点,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知四棱锥P-ABCD的各条棱长均为13,M、N分别是PA、BD上的点,且PM:MA=BN:ND=5:8,则线段MN的长为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是等腰梯形,AB=2,BC=CD=1,AB∥CD,顶点D1在底面ABCD内的射影恰为点C.
(Ⅰ)求证:AD1⊥BC;
(Ⅱ)在AB上是否存在点M,使得C1M∥平面ADD1A1?若存在,确定点M的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在平面直角坐标系中,直线y=x+b是曲线y=lnx的切线,则实数b的值为(  )
A.1B.2C.-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题“任意x≥0,都有2x≥1”的否定,叙述正确的是(  )
A.存在x<0,使得2x≥1B.任意x<0,都有2x<1
C.存在x<0,使得AF∥平面BCED.存在x≥0,使得2x<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A、B、C所对的边分别为a,b,c,且满足:csinA-acosC=0.
(Ⅰ)求角C的大小;
(Ⅱ)求2$\sqrt{3}sin\frac{A}{2}cos\frac{A}{2}-cos(B+\frac{π}{4})$的最大值,并求出取得最大值时角A、B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设$a=\int_{-\frac{π}{2}}^{\frac{π}{2}}{cosx}dx$,则二项式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6展开式中含x2项的系数是-192.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x∈R||x-1|<2},Z为整数集,则集合A∩Z中所有元素的和等于(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知α为第二象限角,sinα=$\frac{3}{5}$,则sin$({α-\frac{π}{6}})$的值等于(  )
A.$\frac{{4+3\sqrt{3}}}{10}$B.$\frac{{4-3\sqrt{3}}}{10}$C.$\frac{{3\sqrt{3}-4}}{10}$D.$\frac{{-4-3\sqrt{3}}}{10}$

查看答案和解析>>

同步练习册答案