分析 (1)利用正弦定理推出sinC-cosC=0.即可求解C的大小.
(2)化简函数y=$2sin(A+\frac{π}{6})$,利用三角函数的最值求出A、B即可.
解答 解:(1)∵csinA-acosC=0,由正弦定理得:sinCsinA-sinAcosC=0,
又∵A为三角形的一内角,∴sinA≠0
∴sinC-cosC=0.
∵0<C<π,∴$C=\frac{π}{4}$;…(6分)
(2)设$y=2\sqrt{3}sin\frac{A}{2}cos\frac{A}{2}-cos(B+\frac{π}{4})$=$\sqrt{3}sinA-cos(π-A)=\sqrt{3}sinA+cosA$=$2sin(A+\frac{π}{6})$,…(9分)
又∵$0<A<\frac{3π}{4}$,∴当$A=\frac{π}{3}$时,ymax=2,
∴$B=π-(\frac{π}{3}+\frac{π}{4})=\frac{5π}{12}$.…(12分)
点评 本题考查正弦定理以及两角和与差的三角函数,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | 命题:“若x2-3x+2=0,则x=2”的逆否命题为“若x≠2,则x2-3x+2≠0” | |
| B. | “a>b”是“ac2>bc2”的充分不必要条件 | |
| C. | 命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0” | |
| D. | 若“p∨q”为假命题,则p,q均为假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}}}{5}$ | B. | $-\frac{{\sqrt{5}}}{5}$ | C. | $\frac{{2\sqrt{13}}}{13}$ | D. | $-\frac{{2\sqrt{13}}}{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com