精英家教网 > 高中数学 > 题目详情
如图所示,点D是AB的中点,点M是△ABC三条中线的交点,O是空间任意一点.求证:
(1)
OD
=
1
2
OA
+
OB
);
(2)
OM
=
1
3
OA
+
OB
+
OC
).
考点:空间向量的加减法
专题:空间向量及应用
分析:(1)点D是AB的中点,利用平行四边形法则可得
OA
+
OB
=2
OD
,即可证明;
(2)由于点M是△ABC三条中线的交点,可得
CM
=
2
3
CD
CD
=
1
2
(
CB
+
CA
)
=
1
2
(
OB
-
OC
+
OA
-
OC
)

因此
OM
=
OC
+
CM
=
OC
+
1
3
(
OA
+
OB
-2
OC
)
即可得出.
解答: 证明:(1)∵点D是AB的中点,∴
OA
+
OB
=2
OD
,∴
OD
=
1
2
OA
+
OB
);
(2)∵点M是△ABC三条中线的交点,∴
CM
=
2
3
CD
CD
=
1
2
(
CB
+
CA
)
=
1
2
(
OB
-
OC
+
OA
-
OC
)
=
1
2
(
OB
+
OA
-2
OC
)

CM
=
1
3
(
OA
+
OB
-2
OC
)

OM
=
OC
+
CM
=
OC
+
1
3
(
OA
+
OB
-2
OC
)
=
1
3
(
OA
+
OB
+
OC
)
点评:本题考查了向量的平行四边形法则与三角形法则,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知O为原点,椭圆
x2
25
+
y2
9
=1上一点P到左焦点F1的距离为4,M是PF1的中点.则|OM|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x、y满足x2+y2+2x-4y+1=0,求下列各式的最大值和最小值:
(1)
y
x-4

(2)3x-4y;
(3)x2+y2

查看答案和解析>>

科目:高中数学 来源: 题型:

现有8名运动员参加110米栏决赛,共有1,2,3,4,5,6,7,8八条跑道,其中甲,乙,丙三名运动员道次各不相邻,丁不在第一道,则安排这8名运动员比赛的方式共有
 
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
4x
4x+a
,且f(x)的图象过点(0,
1
2
 )

(1)求f(x)表达式;
(2)计算f(x)+f(-x);
(3)试求f(-2014)+f(-2013)+f(-2012)+…+f(2013)+f(2014)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x+y=
3
a与圆x2+y2=a2+(a-1)2相交于A、B两点,点O是坐标原点,若△AOB是正三角形,则实数a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆
x2
9
+
y2
4
=1
上一点M(0,2)作圆x2+y2=2的两条切线,点A,B为切点,O为坐标原点,则△AOB的面积为(  )
A、
1
2
B、
2
3
C、1
D、
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设α∈(0,π),且tanα=
5
,则cosα=(  )
A、2
B、-
6
C、
3
6
D、
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,q=
S2
b2

(1)求an与bn
(2)设数列{cn}满足cn=an•bn,求{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案