精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=a•($\frac{1}{3}$)x+bx2+cx(a∈R,b≠0,c∈R),若{x|f(x)=0}={x|f(f(x))=0}≠∅,则实数c的取值范围为[0,4).

分析 设x1∈{x|f(x)=0}={x|f(f(x))=0},从而可推出f(0)=0,从而化简f(x)=bx2+cx;从而可得(bx2+cx)(b2x2+bcx+c)=0与bx2+cx=0的根相同,从而解得.

解答 解:设x1∈{x|f(x)=0}={x|f(f(x))=0},
则f(x1)=0,且f(f(x1))=0,
故f(0)=0,
故a=0;
故f(x)=bx2+cx;
由f(x)=0得,x=0或x=-$\frac{c}{b}$;
f(f(x))=b(bx2+cx)2+c(bx2+cx)=0,
故(bx2+cx)(b2x2+bcx+c)=0,
当c=0时,显然成立;
当c≠0时,方程b2x2+bcx+c=0无根,
故△=(bc)2-4b2c<0,
解得,0<c<4.
综上所述,
0≤c<4,
故答案为:[0,4).

点评 本题考查了集合的相等与函数的关系应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)中,F2为其右焦点,A1为其左顶点,点B(0,b),若以A1F2为直径的圆经过A1B的中点,则此双曲线的离心率为1+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,(x≥0)}\\{{x}^{2}-4x,(x<0)}\\{\;}\end{array}\right.$,若f(2-a)>f(2a),求a的取值范围为(-2,$\frac{2}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.${∫}_{1}^{e}$($\frac{1}{x}$+x)dx=$\frac{1}{2}$e2+$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若正数x,y满足4x+9y=xy,则x+y的最小值为(  )
A.16B.20C.25D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.见如图程序框图,若输入a=110011,则输出结果是(  )
A.51B.49C.47D.45

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)是定义在R上的奇函数.当x≥0时,f(x)=2x+t(t为常数).则f(m)<3成立的一个充分不必要条件是(  )
A.m<3B.m<2C.-2<m<2D.m>2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某种产品的质量以其指标值来衡量,其指标值越大表明质量越好,且指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的指标值,得到了下面的试验结果:
A配方的频数分布表
 指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]
 频数 2042  22
B配方的频数分布表
 指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]
 频数 1242  3210 
(1)分别估计用A配方,B配方生产的产品的优质品率;
(2)已知用B配方生产的一件产品的利润y(单位:元)与其指标值t的关系式为y=$\left\{\begin{array}{l}{-2,y<94}\\{2,94≤t<102}\\{4,t≥102}\end{array}\right.$,估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述产品平均每件的利润.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“a=3“是“直线(a2-2a)x+y=0和直线3x+y+1=0平行”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案