从中这个数中取(,)个数组成递增等差数列,所有可能的递增等差数列的个数记为.
(1)当时,写出所有可能的递增等差数列及的值;
(2)求;
(3)求证:.
(1);(2);(3)详见解析.
解析试题分析:(1)符合要求的递增等差数列全部列出,即可求出的值;(2)求,即从到个数中取个,组成递增等差数列,由等差数列的性质知,故分别取,讨论各种情况下,数列的个数,如时,分别取,共可得个符合要求的数列,以此类推,即可得到其他情况的符合要求的数列的个数,加起来的和即为符合要求数列的个数,即得的值;(3)求证:,由(2)的求解过程可知,首先确定的范围,即,由于只能取正整数,故取的整数部分是,即,的可能取值为,计算出,利用即可证得结论.
试题解析:(1)符合要求的递增等差数列为1,2,3;2,3,4;3,4,5;1,3,5,共4个.
所以. 3分
(2)设满足条件的一个等差数列首项为,公差为,.
,,的可能取值为.
对于给定的,, 当分别取时,可得递增等差数列个(如:时,,当分别取时,可得递增等差数列91个:;;;,其它同理).
所以当取时,可得符合要求的等差数列的个数为:
. 8分
(3)设等差数列首项为,公差为,
,,
记的整数部分是,则,即.
的可能取值为,
对于给定的,,当分别取时,可得递增等差数列个.
所以当取时,得符合要求的等差数列的个数
科目:高中数学 来源: 题型:解答题
从数列中抽出一些项,依原来的顺序组成的新数列叫数列的一个子列.
(1)写出数列的一个是等比数列的子列;
(2)设是无穷等比数列,首项,公比为.求证:当时,数列不存在
是无穷等差数列的子列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在数列中,且对任意的成等比数列,其公比为,
(1)若;
(2)若对任意的成等差数列,其公差为.
①求证:成等差数列,并指出其公差;
②若,试求数列的前项和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com