分析 (1)根据坐标的运算法则计算即可;
(2)根据向量平行的条件即可求出.
解答 解:(1)3$\overrightarrow{a}$+$\overrightarrow{b}$-2$\overrightarrow{c}$=3(3,2)+(-1,2)-2(4,1)=(9,6)+(-1,2)-(8,2)=(9-1-8,6+2-2)=(0,6).
(2)$\overrightarrow{a}$+k$\overrightarrow{c}$=(3+4k,2+k),2$\overrightarrow{b}$-$\overrightarrow{a}$=(-5,2).
又($\overrightarrow{a}$+k$\overrightarrow{c}$)∥(2$\overrightarrow{b}$-$\overrightarrow{a}$),
∴(3+4k)×2-(-5)×(2+k)=0.
∴k=-$\frac{16}{13}$.
点评 本题考查了向量的坐标运算和向量平行的条件,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{3}$,$\frac{2}{3}$) | B. | ($\frac{2}{3}$,$\frac{3}{2}$) | C. | (0,$\frac{2}{3}$) | D. | ($\frac{3}{2}$,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | -$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 周期为4π的奇函数 | B. | 周期为$\frac{π}{2}$的奇函数 | ||
| C. | 周期为π的偶函数 | D. | 周期为2π的偶函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com