分析 (1)连接MO,由已知可得O为BD的中点,又M为PD的中点,利用三角形中位线定理可得PB∥OM,再由线面平行的判定可得PB∥平面ACM;
(2)在△ADC中,由已知可得∠DAC=90°,即DA⊥AC,又PO⊥平面DAC,得PO⊥AD,由线面垂直的判定可得DA⊥平面PAC;
(3)由M为PD的中点得到M到平面PAC的距离,然后利用等积法求得四面体PACM的体积.
解答 (1)证明:连接MO,∵底面ABCD是平行四边形,且O为AC的中点,∴O为BD的中点,![]()
又M为PD的中点,∴PB∥OM,
∵PB?平面ACM,OM?平面ACM,∴PB∥平面ACM;
(2)证明:在△ADC中,∵∠ADC=45°,AD=AC,∴∠DAC=90°,即DA⊥AC,
又PO⊥平面DAC,∴PO⊥AD,PO∩AC=O,
∴DA⊥平面PAC;
(3)解:在△PAC中,∵AC=1,PO=2,∴${S}_{△PAC}=\frac{1}{2}×1×2=1$,
∵AD=1,且M为PD的中点,∴M到平面PAC的距离d=$\frac{1}{2}$.
则${V}_{P-AMC}={V}_{M-PAC}=\frac{1}{3}×1×\frac{1}{2}=\frac{1}{6}$.
点评 本题考查直线与平面平行的判断,考查直线与平面垂直的判定,训练了利用等积法求多面体的体积,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p1,p2,p3 | B. | p2,p3 | C. | p1,p2 | D. | p1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,+∞) | B. | [2,+∞) | C. | (-∞,2] | D. | (0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com