精英家教网 > 高中数学 > 题目详情
9.已知奇函数f(x)=loga$\frac{b+ax}{1-ax}$,
(1)求b的值,并求出f(x)的定义域
(2)若存在区间[m,n],使得当x∈[m,n]时,f(x)的取值范围为[loga6m,loga6n],求a的取值范围.

分析 (1)由已知f(x)+f(-x)=0,得b=1,即可求出f(x)的定义域;
(2)分类讨论,利用函数的单调性,及当x∈[m,n]时,f(x)的取值范围为[loga6m,loga6n],求a的取值范围.

解答 解:(1)由已知f(x)+f(-x)=0,得b=1…(3分)
故$f(x)={log_a}\frac{1+ax}{1-ax}$,定义域为$({-\frac{1}{a},\frac{1}{a}})$…(6分)
(2)当0<a<1时,$f(x)={log_a}\frac{1+ax}{1-ax}={log_a}({\frac{2}{1-ax}-1})$在$({-\frac{1}{a},\frac{1}{a}})$上单调递减,
故有$\left\{\begin{array}{l}f(m)={log_a}\frac{1+am}{1-am}={log_a}6n\\ f(n)={log_a}\frac{1+an}{1-an}={log_a}6m\end{array}\right.$,而$y=\frac{1+ax}{1-ax}=({\frac{2}{1-ax}-1})$在$({-\frac{1}{a},\frac{1}{a}})$上单调递增,
所以$\frac{1+am}{1-am}<\frac{1+an}{1-an}$又6m<6n与 $\left\{\begin{array}{l}\frac{1+am}{1-am}=6n\\ \frac{1+an}{1-an}=6m\end{array}\right.$矛盾,
故a>1…(8分)
所以$\left\{\begin{array}{l}f(m)={log_a}\frac{1+am}{1-am}={log_a}6m\\ f(n)={log_a}\frac{1+an}{1-an}={log_a}6n\end{array}\right.$,
故方程$\frac{1+ax}{1-ax}=6x$在$({-\frac{1}{a},\frac{1}{a}})$上有两个不等实根,
即6ax2+(a-6)x+1=0在$({-\frac{1}{a},\frac{1}{a}})$上有两个不等实根…(10分)
设g(x)=6ax2+(a-6)x+1,则$\left\{\begin{array}{l}△={({a-6})^2}-24a>0\\-\frac{1}{a}<-\frac{a-6}{12a}<\frac{1}{a}\\ g({-\frac{1}{a}})=\frac{12}{a}>0\\ g({\frac{1}{a}})=2>0\end{array}\right.$…(12分)
$⇒\left\{\begin{array}{l}{a^2}-36a+36>0\\ a<18\end{array}\right.$$⇒a<18-12\sqrt{2}$…(14分)
故$1<a<18-12\sqrt{2}$…(15分)

点评 本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列函数与y=x有相同图象的一个函数是(  )
A.y=($\sqrt{x}$)2B.y=$\frac{x^2}{x}$
C.y=${a^{{{log}_a}x}}$(a>0且a≠1)D.y=logaax

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设f'(x)是函数f(x)在R的导函数,对?x∈R,f(-x)+f(x)=x2,且?x∈[0,+∞),f'(x)>x.若f(2-a)-f(a)≥2-2a,则实数a的取值范围为(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若sin(π+α)=$\frac{3}{5}$,α是第三象限的角,则tanα=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.集合A={x∈R|x2<9},B={x∈R|2x<4},C={x∈R|log${\;}_{\frac{1}{2}}}$x<2},则A∩B=(-3,2);A∪C=(-3,+∞);∁RB=[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{2x-1}{x+1}$.
(1)判断并证明函数f(x)在[0,+∞)的单调性;
(2)若x∈[1,m]时函数f(x)的最大值与最小值的差为$\frac{1}{2}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠ADC=45°,AD=
AC=1,O为AC的中点,PO⊥平面ABCD,PO=2,M为PD的中点.
(1)证明:PB∥平面ACM;
(2)证明:AD⊥平面PAC;
(3)求四面体PACM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.条件p:|x|<a(a>0),q:x2-x-6<0,若p是q的充分条件,则a的取值范围是0<a≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C的对边分别为a,b,c,满足:a2+c2=b2+$\sqrt{2}$ac
( I)求∠B 的大小;
( II)求$\sqrt{2}$cosA+cosC 的最大值.

查看答案和解析>>

同步练习册答案