精英家教网 > 高中数学 > 题目详情
20.设f'(x)是函数f(x)在R的导函数,对?x∈R,f(-x)+f(x)=x2,且?x∈[0,+∞),f'(x)>x.若f(2-a)-f(a)≥2-2a,则实数a的取值范围为(-∞,1].

分析 可构造函数g(x)=f(x)-$\frac{1}{2}$x2,由g(-x)+g(x)=0,可得函数g(x)为奇函数.利用导数可得函数g(x)在R上是增函数,f(2-a)-f(a)≥2-2a,即g(2-a)≥g(a),可得 2-a≥a,由此解得a的范围.

解答 解:∵f(-x)+f(x)=x2
∴f(x)-$\frac{1}{2}$x2 +f(-x)-$\frac{1}{2}$x2 =0,
令g(x)=f(x)-$\frac{1}{2}$x2
∵g(-x)+g(x)=f(-x)-$\frac{1}{2}$x2+f(x)-$\frac{1}{2}$x2=0,
∴函数g(x)为奇函数.
∵x∈(0,+∞)时,f′(x)>x.
∴x∈(0,+∞)时,g′(x)=f′(x)-x>0,
故函数g(x)在(0,+∞)上是增函数,
故函数g(x)在(-∞,0)上也是增函数,
由f(0)=0,可得g(x)在R上是增函数.
f(2-a)-f(a)≥2-2a,等价于f(2-a)-$\frac{(2-a)^{2}}{2}$≥f(a)-$\frac{{a}^{2}}{2}$,
即g(2-a)≥g(a),
∴2-a≥a,解得a≤1.
故答案为:(-∞,1].

点评 本题考查了利用导数研究函数的单调性,然后构造出关于a的不等式求解的思路,本题的关键是由已知条件构造出关于函数g(x)=f(x)-$\frac{1}{2}$x2,然后结合其奇偶性解题是本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设f:A→B是A到B的一个映射,其中A=B={(x,y)|x,y∈R},f:(x,y)→(2x,x-y),则B中元素(2,-1)的原象是(  )
A.(1,2)B.(1,-2)C.(4,3)D.(4,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.复数z=$\frac{-3+i}{2+i}$的共轭复数对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,已知长度为4的线段AB在圆O的圆周上,O为圆心,则$\overrightarrow{AB}$•$\overrightarrow{AO}$=(  )
A.2B.4
C.8D.和动圆O的半径有关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)≤f(2a-1),则实数a的取值范围为(0,$\frac{2}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知sin(α-$\frac{π}{6}$)=$\frac{2}{3}$,α∈(π,$\frac{3π}{2}$),cos($\frac{π}{3}$+β)=$\frac{5}{13}$,β∈(0,π),求cos(β-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若tanα=3,求值
(1)$\frac{cosα+sinα}{cosα-sinα}$,
(2)2sin2α-sinαcosα+cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知奇函数f(x)=loga$\frac{b+ax}{1-ax}$,
(1)求b的值,并求出f(x)的定义域
(2)若存在区间[m,n],使得当x∈[m,n]时,f(x)的取值范围为[loga6m,loga6n],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=(${\frac{1}{2}}$)${\;}^{{x^2}-2x}}$的值域为(  )
A.(0,+∞)B.[2,+∞)C.(-∞,2]D.(0,2]

查看答案和解析>>

同步练习册答案