精英家教网 > 高中数学 > 题目详情
12.若tanα=3,求值
(1)$\frac{cosα+sinα}{cosα-sinα}$,
(2)2sin2α-sinαcosα+cos2α

分析 由于tanα=3,
(1)通过“弦”化“切”,化$\frac{cosα+sinα}{cosα-sinα}$=$\frac{tanα+1}{1-tanα}$,将tanα=3代入计算即可;
(2)化2sin2α-sinαcosα+cos2α=$\frac{2ta{n}^{2}α-tanα+1}{ta{n}^{2}α+1}$,将tanα=3代入计算即可.

解答 解:(1)∵tanα=3,∴$\frac{cosα+sinα}{cosα-sinα}$=$\frac{tanα+1}{1-tanα}$=$\frac{3+1}{1-3}$=-2;
 (2)2sin2α-sinαcosα+cos2α=$\frac{2si{n}^{2}α-sinαcosα+co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{2ta{n}^{2}α-tanα+1}{ta{n}^{2}α+1}$=$\frac{2{×3}^{2}-3+1}{{3}^{2}+1}$=$\frac{8}{5}$.

点评 本题考查三角函数的化简求值,“弦”化“切”是关键,考查转化思想与运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈(-1,1]时,f(x)=|x|,则函数y=f(x)的图象与函数y=log5|x|的图象交点个数为(  )
A.2B.6C.8D.多于8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=a+$\frac{h(x)-3sinx}{h(x)}$(x∈R)存在最大值M和最小值N,若函数h(x)是R上的偶函数,且M+N=8.则实数a的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设f'(x)是函数f(x)在R的导函数,对?x∈R,f(-x)+f(x)=x2,且?x∈[0,+∞),f'(x)>x.若f(2-a)-f(a)≥2-2a,则实数a的取值范围为(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,
(Ⅰ) 求证:PC∥平面EBD;
(Ⅱ) 求证:BC⊥PC.
(Ⅲ) 若:PD=DA=2,求:三棱锥E-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若sin(π+α)=$\frac{3}{5}$,α是第三象限的角,则tanα=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.集合A={x∈R|x2<9},B={x∈R|2x<4},C={x∈R|log${\;}_{\frac{1}{2}}}$x<2},则A∩B=(-3,2);A∪C=(-3,+∞);∁RB=[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠ADC=45°,AD=
AC=1,O为AC的中点,PO⊥平面ABCD,PO=2,M为PD的中点.
(1)证明:PB∥平面ACM;
(2)证明:AD⊥平面PAC;
(3)求四面体PACM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数为偶函数的是 (  )
A.$f(x)=\frac{{(x-1)({x^4}-3{x^2})}}{x-1}$B.f(x)=x3-2x
C.$f(x)=\frac{{{x^2}+1}}{x}$D.f(x)=x2+1

查看答案和解析>>

同步练习册答案