精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中直线的倾斜角为,且经过点,以坐标系的原点为极点, 轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线与曲线相交于两点,过点的直线与曲线相交于两点,且

(1)平面直角坐标系中,求直线的一般方程和曲线的标准方程;

(2)求证: 为定值.

【答案】(1),(2)

【解析】试题分析:(1)根据点斜式可得直线的一般方程,注意讨论斜率不存在的情形;根据将曲线的极坐标方程化为直角坐标方程,配方化为标准方程.(2)利用直线参数方程几何意义求弦长:先列出直线参数方程,代入圆方程,根据及韦达定理可得,类似可得,相加即得结论.

试题解析:解:(1)因为直线的倾斜角为,且经过点

时,直线垂直于轴,所以其一般方程为

时,直线的斜率为,所以其方程为

即一般方程为

因为的极坐标方程为,所以

因为,所以

所以曲线的标准方程为

(2)设直线的参数方程为为参数),

代入曲线的标准方程为

可得,即

所以

同理

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,已知点,曲线的参数方程为为参数).以原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为

(Ⅰ)判断点与直线的位置关系并说明理由;

(Ⅱ)设直线与曲线的两个交点分别为 ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四组函数中,是同一个函数的是(
A.
B.f(x)=2log2x,
C.f(x)=ln(x﹣1)﹣ln(x+1),
D.f(x)=lg(1﹣x)+lg(1+x),g(x)=lg(1﹣x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=loga(x+1),(a>0,a≠1)的图象经过点(﹣ ,﹣2),图象上有三个点A,B,C,它们的横坐标依次为t﹣1,t,t+1,(t≥1),记三角形ABC的面积为S(t),

(1)求f(x)的表达式;
(2)求S(1);
(3)是否存在正整数m,使得对于一切不小于1的t,都有S(t)<m,若存在求的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)过点P(﹣1,﹣1),c为椭圆的半焦距,且c= b.过点P作两条互相垂直的直线l1 , l2与椭圆C分别交于另两点M,N.
(1)求椭圆C的方程;
(2)若直线l1的斜率为﹣1,求△PMN的面积;
(3)若线段MN的中点在x轴上,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数y=x3m9(m∈N*)的图象关于y轴对称,且在(0,+∞)上函数值随x增大而减小.
(1)求m的值;
(2)求满足(a+1) <(3﹣2a) 的a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)= 是奇函数.
(1)求a,b的值;
(2)判断函数的单调性并证明;
(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知P(﹣2,3)是函数y= 图象上的点,Q是双曲线在第四象限这一分支上的动点,过点Q作直线,使其与双曲线y= 只有一个公共点,且与x轴、y轴分别交于点C、D,另一条直线y= x+6与x轴、y轴分别交于点A、B.则
(1)O为坐标原点,三角形OCD的面积为
(2)四边形ABCD面积的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式:|2x﹣m|≤1的整数解有且仅有一个值为2.
(1)求整数m的值;
(2)在(1)的条件下,解不等式:|x﹣1|+|x﹣3|≥m.

查看答案和解析>>

同步练习册答案