【题目】已知数列{an}满足a1=0,an+1=an+2
+1
(1)求证数列{
}是等差数列,并求出an的通项公式;
(2)若bn=
,求数列{b}的前n项的和Tn .
科目:高中数学 来源: 题型:
【题目】设顶点在原点,焦点在
轴上的拋物线过点
,过
作抛物线的动弦
,
,并设它们的斜率分别为
,
.
(Ⅰ)求拋物线的方程;
(Ⅱ)若
,求证:直线
的斜率为定值,并求出其值;
(III)若
,求证:直线
恒过定点,并求出其坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设椭圆的中心为原点
,长轴在
轴上,上顶点为
,左,右焦点分别为
,线段
的中点分别为
,且
是面积为4的直角三角形.
(1)求该椭圆的离心率和标准方程;
(2)过
做直线
交椭圆于
两点,使
,求直线
的方程.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线
的极坐标方程是
,以极点为原点
,极轴为
轴正半轴(两坐标系取相同的单位长度)的直角坐标系
中,曲线
的参数方程为:
(
为参数).
(1)求曲线
的直角坐标方程与曲线
的普通方程;
(2)将曲线
经过伸缩变换
后得到曲线
,若
分别是曲线
和曲线
上的动点,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆C:
+
=1(a>b>0)的离心率是
,且过点(
,
).设点A1 , B1分别是椭圆的右顶点和上顶点,如图所示过 点A1 , B1引椭圆C的两条弦A1E、B1F.![]()
(1)求椭圆C的方程;
(2)若直线A1E与B1F的斜率是互为相反数.
①求直线EF的斜率k0②设直线EF的方程为y=k0x+b(﹣1≤b≤1)设△A1EF、△B1EF的面积分别为S1和S2 , 求S1+S2的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某产品生产厂家生产一种产品,每生产这种产品
(百台),其总成本为
万元
,其中固定成本为42万元,且每生产1百台的生产成本为15万元
总成本
固定成本
生产成本
销售收入
万元
满足
,假定该产品产销平衡
即生产的产品都能卖掉
,根据上述条件,完成下列问题:
写出总利润函数
的解析式
利润
销售收入
总成本
;
要使工厂有盈利,求产量
的范围;
工厂生产多少台产品时,可使盈利最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,右焦点为
,斜率为1的直线
与椭圆
交于
两点,以
为底边作等腰三角形,顶点为
.
(1)求椭圆
的方程;
(2)
为椭圆
上任意一点,若
,求
的最大值和最小值.
(3)求
的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com