精英家教网 > 高中数学 > 题目详情
函数f(x)=ax2+bx+c是偶函数的条件是
 
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:根据偶函数的性质:f(-x)=f(x),列出方程利用对应系数相等求出a、b、c的值.
解答: 解:∵f(x)=ax2+bx+c是偶函数,
∴f(-x)=f(x),即ax2-bx+c=ax2+bx+c,
a=a
-b=b
c=c
,即a、c∈R,且b=0,
故答案为:a、c∈R,且b=0.
点评:本题考查了偶函数的性质:f(-x)=f(x)的应用,以及等式中系数的求法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等比数列{an}前n项和为Sn,且满足S3=
7
2
,S6=
63
2

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求log2a1+log2a2+log2a3+…+log2a25的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+x-2,
(Ⅰ)求曲线y=f(x)在点(1,0)处的切线的方程;
(Ⅱ)如果曲线y=f(x)的一条切线与直线y=4x-1平行,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个判断:
①集合{-1,0,1}的真子集有6个;
②函数y=ln(x2+2x+2)的值域是[0,+∞);
③函数y=2|x|的最小值是1;
④在同一坐标系中函数y=2x与y=2-x的图象关于y轴对称;
其中正确命题的序号是
 
(写出所有正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=x3+x2-1在点M(1,1)处的切线的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某饮料店的日销售收入y(单位:百元)与当天平均气温x(单位:℃)之间有下列数据:
x -2 -1 0 1 2
y 5 4 2 2 1
甲、乙、丙三位同学对上述数据进行了研究,分别得到了x与y之间的三个线性回归方程:
?
y
=-x+3
;②
?
y
=-x+2.8
;③
?
y
=-x+2.6
,④
?
y
=-x+2.4
,其中正确方程的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是R上的偶函数,并且在区间(0,+∞)上是增函数,若f(1)=0,则满足xf(x)>0的x的集合是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,则输出的S=(  )
A、98B、258C、10D、34

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,且满足Sn=n-an(n∈N*)
(Ⅰ)求证:数列{an-1}是等比数列;
(Ⅱ)设bn=(2-n)(an-1),求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案