精英家教网 > 高中数学 > 题目详情
4.已知圆C:(x+2)2+y2=4,直线l:kx-y-2k=0(k∈R),若直线l与圆C恒有公共点,则实数k的最小值是-$\frac{\sqrt{3}}{3}$.

分析 由题意,圆心到直线的距离d=$\frac{|-4k|}{\sqrt{{k}^{2}+1}}$≤2,由此可得实数k的最小值.

解答 解:由题意,圆心到直线的距离d=$\frac{|-4k|}{\sqrt{{k}^{2}+1}}$≤2,
∴-$\frac{\sqrt{3}}{3}$≤k≤$\frac{\sqrt{3}}{3}$,
∴实数k的最小值是-$\frac{\sqrt{3}}{3}$,
故答案为-$\frac{\sqrt{3}}{3}$

点评 本题考查直线与圆的位置关系,考查点到直线距离公式的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数f(x)=$\root{3}{x-1}$+log2(x2-1)的定义域为(  )
A.(1,+∞)B.(-∞,-1)∪(1,+∞)C.(-∞,-1)∪[1,+∞)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题p:|x+2|>2,命题q:x2-3x+2<0,则¬q是¬p成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.$\frac{sin15°-cos15°}{sin15°+cos15°}$=(  )
A.$-\sqrt{3}$B.$\sqrt{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知命题p:?x∈[1,2],x2-(k+1)x+1≤0,命题q:方程$\frac{x^2}{9-2k}+\frac{y^2}{k}=1$表示焦点在x轴上的椭圆.
(1)若p是真命题,求实数k的取值范围;
(2)若p且q为假命题,p或q为真命题,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=-$\frac{1}{2}$x2+bln(x+2)在区间[-1,2]不单调,则b的取值范围是(  )
A.(-∞,-1]B.[8,+∞)C.(-∞,-1]∪[8,+∞)D.(-1,8)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.师大附中高一研究性学习小组,在某一高速公路服务区,从小型汽车中按进服务区的先后,以每间隔10辆就抽取一辆的抽样方法抽取20名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段:[70,75),[75,80),[80,85),[85,90),[90,95),[95,100]统计后得到如图的频率分布直方图.
(1)此研究性学习小组在采集中,用到的是什么抽样方法?并求这20辆小型汽车车速的众数和中位数的估计值;
(2)若从车速在[80,90)的车辆中做任意抽取3辆,求车速在[80,85)和[85,90)内都有车辆的概率;
(3)若从车速在[90,100)的车辆中任意抽取3辆,求车速在[90,95)的车辆数的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.求由曲线y=(x+2)2与x轴及直线y=4-x所围成的平面图形的面积$\frac{32}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.△ABC中,角A.B,C的对边分别为3,4,5,点H位于AB边上,沿CH折叠△ABC,若折叠过程中始终有AB⊥CH,则三棱锥H-ABC的体积的最大值为$\frac{288}{125}$.

查看答案和解析>>

同步练习册答案